

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	vedit 0.0.1rc1 documentation

Welcome to vedit’s documentation!

Contents:

	vedit Overview

	Installation

	Before You Begin

	Table of Contents

	Examples
	Example 1: Clip 2 seconds out of the middle of a video

	Example 2: Resize a video with PAD, CROP, or PAN

	Example 3: Put two videos next to each other

	Example 4: Replace the audio track of a video

	Example 5: Overlay videos on top of other videos

	Example 6: Cascade overlayed videos and images on top of a base video or image

	Example 7: Add an overlay image, such as a watermark

	Module Concepts
	Display Configuration

	The OVERLAY display_style

	CROP, PAD, and PAN

	Windows

	Videos and Clips

	Watermarks

	Audio

	Logging Output

	Getting Help

	Contributing

	Odds and Ends

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Matthew Hayward.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	vedit 0.0.1rc1 documentation

vedit Overview

Project homepage at: https://github.com/digitalmacgyver/vedit

vedit is a Python library that simplifies editing and combining video files using ffmpeg.

Examples of the sorts of things vedit makes easy include:

	Extracting a clip from a longer video

	Combining videos or clips together by concatenating them end to end

	Composing videos together, for example side by side or overlayed on top of a background image

	Changing the resolution of a video and cropping or padding a video to change its aspect ratio

	Overlaying images onto a video

	Adding an audio track (like a song) to a video

There are numerous stumbling blocks to these tasks - vedit makes the above things easy by automatically handling videos with:

	Different resolutions

	Different sample aspect ratios

	Different pixel formats

	Different frame rates

	Different audio streams and channels

Installation

Assuming you have pip installed:

pip install vedit

However, there is nothing in the package that is special. The only
dependencies are the future module and a Python 2.7 or later
(including Python 3) interpreter. You can just download from the
project GitHub repository and put the vedit directory in your
Python path of an interpreter that also has future installed.

Before You Begin

vedit depends on the ffmpeg and ffprobe programs from the FFmpeg [https://ffmpeg.org/] project, and on the libx264 video codec and the libfdk_aac audio codec, for example by configuring ffmpeg for compilation with:

./configure –enable-gpl –enable-libx264 –enable-nonfree –enable-libfdk-aac –enable-libfreetype –enable-libfontconfig

(--enable-libfreetype --enable-libfontconfig only needed if the audio_desc option is used).

Table of Contents

	Examples
	Example 1: Clip 2 seconds out of the middle of a video

	Example 2: Resize a video with PAD, CROP, or PAN

	Example 3: Put two videos next to each other

	Example 4: Replace the audio track of a video

	Example 5: Overlay videos on top of other videos

	Example 6: Cascade overlayed videos and images on top of a base video or image

	Example 7: Add an overlay image, such as a watermark

	Module Concepts
	Windows

	Display Configuration

	Videos and Clips

	Watermarks

	Audio

	Logging Output

	Getting Help

	Contributing

	Odds and Ends

Examples

To get an idea of the sorts of things you can do with a few lines of code, consider these examples, which can be generated from the examples.py script in the root directory of the vedit Python module.

All the examples below assume that FFmpeg [https://ffmpeg.org/] is installed as described in Before You Begin.

All the examples below begin with the following boilerplate, and assume the ./example_output directory exists:

#!/usr/bin/env python

import vedit
import logging
logging.basicConfig()
log = logging.getLogger()
log.setLevel(logging.DEBUG)

Back to Table of Contents

Example 1: Clip 2 seconds out of the middle of a video

Link to input for example: https://youtu.be/9ul6rWAewd4

Link to example output: https://youtu.be/FEr6WMUx_4A

Clipping 2 seconds out of source video from 1.5 seconds to 3.5 seconds.
source = vedit.Video("./examples/testpattern.mp4")
output_file = "./example_output/example01.mp4"
clip = vedit.Clip(video=source, start=1.5, end=3.5)
window = vedit.Window(width=source.get_width(),
 height=source.get_height(),
 output_file=output_file)
window.clips = [clip]
window.render()
log.info("Output file at %s" % (output_file))

Back to Table of Contents

Example 2: Resize a video with PAD, CROP, or PAN

Link to source input: https://youtu.be/Qmbgrr6WJEY

Links to example outputs:

	Padded clip: https://youtu.be/2bTdwEzraxA

	Panned clip: https://youtu.be/lCpbnudnFyc

	Cropped clip: https://youtu.be/96v-KVq9B-g

Turning a 1280x720 16:9 input video into a 640x480 4:3 video.
source = vedit.Video("./examples/d005.mp4")
clip = vedit.Clip(video=source)

#Since the input and output aspect ratios don't match, pad the input onto a blue background.
pad_output = "./example_output/example02-pad.mp4"
pad_display = vedit.Display(display_style=vedit.PAD, pad_bgcolor="Blue")
window = vedit.Window(width=640, height=480,
 display=pad_display,
 output_file=pad_output)
window.clips = [clip]
window.render()
log.info("Pad output file at: %s" % (pad_output))

Render a cropped version as well. Note the watermark is getting cropped out on the right.
crop_output = "./example_output/example02-crop.mp4"
crop_display = vedit.Display(display_style=vedit.CROP)
window = vedit.Window(width=640, height=480,
 display=crop_display,
 output_file=crop_output)
window.clips = [clip]
window.render()
log.info("Crop output file at: %s" % (crop_output))

Render a version where we pan over the input image as it plays as well. Note the watermark moves from left to right.
pan_output = "./example_output/example02-pan.mp4"
pan_display = vedit.Display(display_style=vedit.PAN)
window = vedit.Window(width=640, height=480,
 display=pan_display,
 output_file=pan_output)
window.clips = [clip]
window.render()
log.info("Pan output file at: %s" % (pan_output))

Back to Table of Contents

Example 3: Put two videos next to each other

Example output: https://youtu.be/fsYw2jLyuQ4

Lets set up some source videos, and some clips for use below.
video_1 = vedit.Video("./examples/i030.mp4")

Put two clips from video 1 side by side, with audio from the
left clip only, ending after 8 seconds (we could also use clips
from different videos).
clip_1_0_5 = vedit.Clip(video=video_1, start=0, end=5)
clip_1_10_20 = vedit.Clip(video=video_1, start=10, end=20,
 display=vedit.Display(include_audio=False))

Set up two windows, one for each clip, and one to hold the other two, and set the duration.
#
Since clip 1 is 5 seconds long and we are making an 8 second
video, there will be time when clip 1 is not playing - set the
background color to green during this time.
output_file = "./example_output/example03.mp4"
base_window = vedit.Window(width=1280*2, height=720, duration=8, bgcolor='Green',
 output_file=output_file)
Set the x, y coordinates of this window inside its parent, as
measure from the top right.
#
Here we are putting the videos flush side by side, but they
could be on top of each other, overlapping, centered in a much
larger base_window, etc., etc..
clip_1_window = vedit.Window(width=1280, height=720, x=0, y=0, clips=[clip_1_0_5])
clip_2_window = vedit.Window(width=1280, height=720, x=1280, y=0, clips=[clip_1_10_20])
base_window.windows = [clip_1_window, clip_2_window]
base_window.render()
log.info("Side by side output is at: %s" % (output_file))

Back to Table of Contents

Example 4: Replace the audio track of a video

Example outputs:

	Not attributed: https://youtu.be/4Z2Uigssc88

	Attributed song: https://youtu.be/ojgAs5A5bSg

source = vedit.Video("./examples/i010.mp4")
output_file = "./example_output/example04.mp4"
Get a clip, but override any Window settings for its audio.
clip = vedit.Clip(video=source, display=vedit.Display(include_audio=False))
Give this window it's own audio track, and set the duration to
10 seconds (otherwise it will go on as long as the audio track).
#
Note - if the window audio track is longer than the video
content, it fades out starting 5 seconds from the end.
window = vedit.Window(audio_file="./examples/a2.mp4", duration=10,
 output_file=output_file)
window.clips = [clip]
window.render()
log.info("Replaced audio in output: %s" % (output_file))

Let's make a version where we attribute the audio with some text.
song_attribution = '''This video features the song:
Chuckie Vs Hardwell Vs Sandro Silva Vs Cedric & Quintino
EPIC CLARITY JUMP- (NC MASHUP) LIVE
By: NICOLE CHEN
Available under under a Creative Commons License:
http://creativecommons.org/licenses/by/3.0/ license'''

output_file = "./example_output/example04-attributed.mp4"
window = vedit.Window(audio_file="./examples/a2.mp4",
 audio_desc=song_attribution,
 duration=10,
 output_file=output_file)
window.clips = [clip]
window.render()
log.info("Replaced audio in output: %s" % (output_file))

Back to Table of Contents

Example 5: Overlay videos on top of other videos

Example outputs:

	All audio tracks (bleagh): https://youtu.be/lqLLlXPYg3c

	Just one audio track: https://youtu.be/hL0t3RXHKAM

Let's overlay two smaller windows on top of a base video.
base_video = vedit.Video("./examples/i030.mp4")
base_clip = vedit.Clip(video=base_video)
output_file = "./example_output/example05.mp4"
Use the default width, height, and display parameters:
1280x1024, which happens to be the size of this input.
base_window = vedit.Window(clips = [base_clip],
 output_file=output_file)

We'll create two smaller windows, each 1/3 the size of the
base_window, and position them towards the top left, and bottom
right of the base window.
overlay_window1 = vedit.Window(width=base_window.width/3, height=base_window.height/3,
 x=base_window.width/12, y=base_window.height/12)
overlay_window2 = vedit.Window(width=base_window.width/3, height=base_window.height/3,
 x=7*base_window.width/12, y=7*base_window.height/12)

Now let's put some clips in each of the overlay windows.
window_1_clips = [
 vedit.Clip(video=vedit.Video("./examples/d007.mp4")),
 vedit.Clip(video=vedit.Video("./examples/d006.mp4")),
]
window_2_clips = [
 vedit.Clip(video=vedit.Video("./examples/p006.mp4")),
 vedit.Clip(video=vedit.Video("./examples/p007.mp4")),
 vedit.Clip(video=vedit.Video("./examples/p008.mp4")),
]

Now let's embed the clips in the windows, and the overlay
windows in our base_window and render.
overlay_window1.clips = window_1_clips
overlay_window2.clips = window_2_clips
base_window.windows = [overlay_window1, overlay_window2]
base_window.render()
log.info("Made multi-video composition at: %s" % (output_file))

Well - the last video looks OK, but it sounds terrible - the
audio from all the videos are being mixed together.
#
Let's try again but exclude audio from everything but the base
video.
output_file = "./example_output/example05-single-audio.mp4"
no_audio_display_config = vedit.Display(include_audio=False)
no_audio_overlay_window1 = vedit.Window(width=base_window.width/3, height=base_window.height/3,
 x=base_window.width/12, y=base_window.height/12,
 display=no_audio_display_config)
no_audio_overlay_window2 = vedit.Window(width=base_window.width/3, height=base_window.height/3,
 x=7*base_window.width/12, y=7*base_window.height/12,
 display=no_audio_display_config)

Now let's embed the clips in the windows, and the overlay
windows in our base_window and render.
no_audio_overlay_window1.clips = window_1_clips
no_audio_overlay_window2.clips = window_2_clips
base_window.output_file = output_file
base_window.windows = [no_audio_overlay_window1, no_audio_overlay_window2]
base_window.render()
log.info("Made multi-video composition with single audio track at: %s" % (output_file))

Back to Table of Contents

Example 6: Cascade overlayed videos and images on top of a base video or image

Example output: https://youtu.be/K2SuPqWrG3M

import glob
import random

The OVERLAY display_style when applied to a clip in the window
makes it shrink a random amount and be played while it scrolls
across the base window.
#
Let's use that to combine several things together and make a
huge mess!
output_file = "./example_output/example06.mp4"
base_video = vedit.Video("./examples/i030.mp4")

Let's use a different audio track for this.
base_clip = vedit.Clip(video=base_video, display=vedit.Display(include_audio=False))
base_window = vedit.Window(clips = [base_clip],
 output_file=output_file,
 duration=30,
 audio_file="./examples/a2.mp4")

Turn our cat images into clips of random length between 3 and 6
seconds and have them cascade across the screen from left to
right.
cat_display = vedit.Display(display_style=vedit.OVERLAY,
 overlay_direction=vedit.RIGHT,
 include_audio=False,
 overlay_concurrency=4,
 overlay_min_gap=0.8)
cat_clips = []
for cat_pic in glob.glob("./examples/cat*jpg"):
 cat_video_file = vedit.gen_background_video(bgimage_file=cat_pic,
 duration=random.randint(3, 6))
 cat_video = vedit.Video(cat_video_file)
 cat_clips.append(vedit.Clip(video=cat_video, display=cat_display))

Turn our dog images into clips of random length between 2 and 5
seconds and have them cascade across the screen from top to
bottom.
dog_display = vedit.Display(display_style=vedit.OVERLAY,
 overlay_direction=vedit.DOWN,
 include_audio=False,
 overlay_concurrency=4,
 overlay_min_gap=0.8)
dog_clips = []
for dog_pic in glob.glob("./examples/dog*jpg"):
 dog_video_file = vedit.gen_background_video(bgimage_file=dog_pic,
 duration=random.randint(3, 6))

 dog_video = vedit.Video(dog_video_file)
 dog_clips.append(vedit.Clip(video=dog_video, display=dog_display))

Throw in the clips from the p series of videos of their full
duration cascading from bottom to top.
pvideo_display = vedit.Display(display_style=vedit.OVERLAY,
 overlay_direction=vedit.UP,
 include_audio=False,
 overlay_concurrency=4,
 overlay_min_gap=0.8)
pvideo_clips = []
for p_file in glob.glob("./examples/p0*mp4"):
 pvideo_video = vedit.Video(p_file)
 pvideo_clips.append(vedit.Clip(video=pvideo_video, display=pvideo_display))

Shuffle all the clips together and add them onto the existing
clips for the base_window.
overlay_clips = cat_clips + dog_clips + pvideo_clips
random.shuffle(overlay_clips)
base_window.clips += overlay_clips
base_window.render()
log.info("Goofy mashup of cats, dogs, and drone videos over Icelandic countryside at: %s" % (output_file))

Note: Since the composition of this video involves several random
elements, the output you get will not be the same as the example
output below.

Back to Table of Contents

Example 7: Add an overlay image, such as a watermark

Example output: https://youtu.be/1PrADMtqdRU

import glob

Let's make our background an image with a song.
output_file = "./example_output/example07.mp4"
dog_background = vedit.Window(bgimage_file="./examples/dog03.jpg",
 width=960, #The dimensions of this image
 height=640,
 duration=45,
 audio_file="./examples/a3.mp4",
 output_file=output_file)

Let's put two windows onto this image, one 16:9, and one 9:16.
horizontal_window = vedit.Window(width = 214,
 height = 120,
 x = (960/2-214)/2, # Center it horizontally on the left half.
 y = 80,
 display=vedit.Display(include_audio=False, display_style=vedit.CROP))
vertical_window = vedit.Window(width=120,
 height=214,
 x = 740,
 y = (640-214)/2, # Center it vertically.
 display=vedit.Display(include_audio=False, display_style=vedit.PAN))

Let's let the system distribute a bunch of our 3 second clips
among the horizontal and vertical windows automatically.
video_clips = []
for video_file in glob.glob("./examples/*00[5-9].mp4"):
 video_clips.append(vedit.Clip(end=3, video=vedit.Video(video_file)))

With these options this will randomize the input clips among
the two windows, and keep recycling them until the result is 45
seconds long.
vedit.distribute_clips(clips=video_clips,
 windows=[horizontal_window, vertical_window],
 min_duration=45,
 randomize_clips=True)

Add the overlay windows to the background.
dog_background.windows = [horizontal_window, vertical_window]

Let's set up a watermark image to show over the front and end of
out video. The transparent01.png watermark image is 160x160
pixels.
#
Let's put it in the top left for the first 10 seconds.
front_watermark = vedit.Watermark(filename="./examples/transparent01.png",
 x=0,
 y=0,
 fade_out_start=7,
 fade_out_duration=3)
Let's put it in the bottom right for the last 15 seconds.
back_watermark = vedit.Watermark(filename="./examples/transparent01.png",
 x=dog_background.width-160,
 y=dog_background.height-160,
 fade_in_start=-15, # Negative values are times from the end of the video.
 fade_in_duration=5)

Add watermarks to the background.
dog_background.watermarks = [front_watermark, back_watermark]

dog_background.render()
log.info("Random clips over static image with watermarks at: %s" % (output_file))

Back to Table of Contents

Module Concepts

There are four main classes in the vedit module:

	Video

	Video represents a given video or image file on the filesystem.

	Clip

	Clip represents a portion of a video with a given start and end time. When associated with a Window and a Display a Clip can be rendered into an output video.

	Display

	Display configures the properties that a given Clip has when it is rendered into a given Window.

	Window

	Window objects are the building blocks that are used to compose Clip objects together. The width and height properties of a Window determine the size of a Clip when it is rendered in that Window. In basic usage one or more Clip objects are associated with a Window which is then rendered. In more advanced usage a Window can include any number of child Window and Clip objects to create complex outputs where several different clips play at the same time.

Back to Table of Contents

Display Configuration

The Display object contains configuration that dictates how a given Clip appears when the Window it is in is rendered.

Each Clip can its own Display, and so can each Window. When considering what Display settings to use for a given Clip the following selections are made:

	If the Clip has a Display object, it is used.

	Otherwise, if the Window has a Display object, it is used.

	Otherwise, the Default display elements described below are used.

Constructor arguments:

	Argument
	Required
	Default
	Description

	display_style
	No
	vedit.PAD
	One of vedit.CROP, PAD, PAN, or OVERLAY

	overlay_concurrency
	No
	3
	If display_style is OVERLAY, how many Clips may cascade at the same time

	overlay_direction
	No
	vedit.DOWN
	One of UP, DOWN, LEFT, or RIGHT. If display_style is OVERLAY, what direction the Clips cascade

	overlay_min_gap
	No
	4
	If display_style is OVERLAY, the shortest period of time between clips cascade

	pad_bgcolor
	No
	‘Black’
	If display_style is PAD, what color should be on the background of the Clip in [0x|#]RRGGBB format

	pan_direction
	No
	vedit.ALTERNATE
	One of vedit.UP, DOWN, LEFT, or RIGHT. If display_style is PAN, what direction the Window should pan over the Clip

	include_audio
	No
	True
	Should audio from this Clip be included in the output

Public methods: None

The OVERLAY display_style

This display_style makes the Clip be rendered as a small (randomly sized between 1/2 and 1/3 of the width of its Window) tile that cascades across the Window while it plays.

The idea here is to make a collage of images or clips. For a silly example see https://youtu.be/K2SuPqWrG3M - the output for Example 6: Cascade overlayed videos and images on top of a base video or image.

When a several Clips are rendered in a given Window with the OVERLAY display_style the behavior of the cascading is further controlled by:

	overlay_concurrency - The number of clips that can be in the Window at once.

	overlay_direction - One of vedit.UP, DOWN, LEFT, or RIGHT. The Clip will move across the Window in this direction as it plays.

	overlay_min_gap - The shortest time in seconds between when two Clip objects will move across the Window.

CROP, PAD, and PAN

display_style: When the a Clip is rendered in a Window, if the Clip and the Window do not have the same aspect ratio, something must be done to make the Clip fit in the Window.

If the display_style is:

CROP: The Clip will be scaled to the smallest size such that both its height and width are at least as large as the Window it is in. The Clip is then centered in the Window and any portions of the Clip that fall outside the Window are cropped away and discarded.

As in Example 2: Resize a video with PAD, CROP, or PAN when: https://youtu.be/Qmbgrr6WJEY is cropped the result is: https://youtu.be/96v-KVq9B-g

PAD: The Clip will be scaled to the largest size such that both its height and width are no larger than the Window it is in. Then any space in the Window not covered by the clip is colored the pad_bgcolor color (defaults to black).

As in Example 2: Resize a video with PAD, CROP, or PAN when: https://youtu.be/Qmbgrr6WJEY is padded onto a blue background the result is: https://youtu.be/2bTdwEzraxA

PAN: The Clip will be scaled to the smallest size such that both its height and width are at least as large as the Window it is in. The Clip then is scrolled through the Window in the direction specified by pan_direction. pan_direction is one of UP/RIGHT, DOWN/LEFT, or ALTERNATE.

As in Example 2: Resize a video with PAD, CROP, or PAN when: https://youtu.be/Qmbgrr6WJEY is panned with pan_direction of vedit.RIGHT the result is: https://youtu.be/lCpbnudnFyc

Display Examples:

A display that will crop the input and remove the audio:
crop_silent = Display(display_style=vedit.CROP, include_audio=False)

A display that will pad the input with a green background and include the audio from it:
pad = Display(display_style=vedit.PAD, pad_bgcolor='Green', include_audio=True)
Or - more concisely relying on the defaults values for display_style and include_audio:
pad = Display(pad_bgcolor='Green')

A display that will have up to 5 clips cascading over the Window
at a time, starting no more than once a second, and moving from top
to bottom:
cascade_5 = Display(display_style=vedit.OVERLAY, overlay_concurrency=5, overlay_min_gap=1)

A display that will pan over the input from bottom to top or right to left (depending on whether the Clip is taller or wider than the Window it is in):
pan_up = Display(display_style=vedit.PAN, pan_direction=vedit.UP)

Back to Table of Contents

Windows

The Window object is used to compose Clip objects together into a rendered video output.

A Window has a background of a solid color or static image, and optionally may have:

	A list of Clip``s that it will show in order (perhaps cascading through the ``Window as they play if the Display.display_style for that Clip is OVERLAY).

	A list of other Window objects that are rendered on top of it, for example several windows can be composed like:

+--+
| Window 1 |
| +-------------------------+ |
	Window 2	+---------+		
			Window 3	
	+------------			
+---------------	Window 4			
	+---------+			
		Window 5	+---------+	
	+---------+			
+--------------+				
+--+

In the example above there are five windows:

	Window 1 has child Window objects: Window 2, Window 3, and Window 4

	Window 4 has child Window: Window 5

Each of these five Window objects would have it’s own content of Clips, background images, and/or Watermark objects.

Example 5: Overlay videos on top of other videos has an example of two Windows overlayed onto another at: https://youtu.be/hL0t3RXHKAM

The duration of a Window‘s rendered video output will be:

	The duration attribute, if set during construction

	Otherwise, if an audio_file is specified during construction, the length of that audio stream

	Otherwise, the longest computed time it will take the clips in this or any of its child windows to play

Constructor arguments: (presented in rough order of importance)

	Argument
	Required
	Default
	Description

	windows
	No
	None
	A list of child Windows. May be set after construction by assigning to the .windows attribute

	clips
	No
	None
	A list of Clips to render in this Window. May be set after construction by assigning to the .clips attribute

	bgcolor
	No
	‘Black’
	The background color for this Window that will be shown in regions of this Window that do not otherwise have content (from a Clip, a child Window, or Watermark). May be set with a string in [0x|#]RRGGBB format.

	bgimage_file
	No
	None
	If provided, a background image for this Window that will be shown in regions or times where there is not otherwise content. No scaling is done to this image, so it must be sized at the desired width and height.

	duration
	No
	None
	If specified, the duration of this Window when rendered. Otherwise will default first to the duration of the optional audio_file for this Window, and then to the maximum duration of the Clips in this Window or any of it’s child Windows.

	width
	No
	1280
	Width in pixels of this Window

	height
	No
	720
	Height in pixels of this Window

	output_file
	No
	./output.mp4
	Where to place the output video for when this Window is rendered. Not needed for Windows that are children of other Windows.

	display
	No
	None
	An optional Display object that specifies the Display configuration for Clips in this Window. NOTE: If a Clip has its own Display object, it will override the Display configuration of the Window it is placed in. The default values are: display_style=PAD, pad_bgcolor='Black', include_audio=True.

	audio_file
	No
	None
	If specified the path to an audio file whose first audio stream will be added to the output of this Window.

	x
	No
	0
	If this Window is a child of another Window, the x coordinate of the top left corner of this Window, as measured from the top left of the parent Window

	y
	No
	0
	If this Window is the child of another Window, the y coordinate of the top left corner of this Window, as measured from the top left of the parent Window

	watermarks
	No
	None
	A list of Watermark objects that can be used to place static images over everything else in this Window at certain times.

	audio_desc
	No
	None
	If a string is specified it’s text will be placed at the bottom left of the window 5 seconds prior to the end of the video.

	z_index
	No
	None
	If not specified Windows will be placed on top of one another in the order they are created, older Windows having lower z_indexes. If specified should be a numeric value, and Windows will be placed underneath other Windows of higher z_index.

	pix_fmt
	No
	None
	If specified the pixel format of the output video. Defaults to: yuv420p

	sample_aspect_ratio
	No
	None
	The SAR of a video is the aspect ratio of individual pixels. If specified must be in W:H format. The SAR tine Window should have when rendered. Defaults to the SAR of the source Video that has provided Clips to this Window. If more than one SAR is present in the inputs a WARNING is issued and 1:1 is used.

	overlay_batch_concurrency
	No
	16
	ffmpeg seems to have problems when many overlays are used, resulting in crashes or errors in the resultant video. This parameter configures the maximum number of overlays that will be composed at one time during rendering. If you are having mysterious ffmpeg errors during rendering, try lowering this.

Public methods:

	.render() - Compose this Window‘s: bgcolor, bgimage_file, audio_file, clips, child windows, watermarks, and audio_desc into a video of width with and height height and place the output at output_file.

	compute_duration(clips, include_overlay_timing=False) - Return a float of how long the Clips in the clips list input would take to render in this Window. If the optional include_overlay_timing argument is true then instead a tuple will be returned, the first element of which is the duration that would result from the clips, and the second is a list of the start and end times of any clips whose Display.display_type is OVERLAY.

Window Examples:

Let's assume we have some existing media objects / files to work with:
clip1 = vedit.Clip(...)
clip2 = vedit.Clip(...)
clip3 = vedit.Clip(...)
watermark = vedit.Watermark(...)
background_image = "./media/background_01.jpg"
song = "./media/song.mp3"

A 640x480 window that uses the default Display properties (overridden on a Clip by Clip basis if they have their own Display settings):
tv = vedit.Window(clips=[clip1, clip2], width=640, height=480)

Let's embed the tv window in a 1080x720 window near the top left
(50 pixels from the left, 60 from the top), with a background_image.
#
We'll make the hd window 30 seconds long.
#
We'll add our song to the hd window.
#
Note: 1080x720 is the default resolution for a Window, so we don't have to set it.

hd = vedit.Window(windows=[tv], bgimage_file=background_image, x=50, y=60,
 duration=30, audio_file=song)

Let's add a clips to the hd window.
hd.clips.append(clip3)

Let's render the result.
#
Since we didn't set output_file on the hd Window, the output will
be placed in ./output.mp4
hd.render()

Back to Table of Contents

Videos and Clips

The Video and Clip objects are tightly related.

A Video represents a source input file. The primary use of the
Video object is as an input to the Clip object’s video
constructor argument.

Video Constructor arguments:

	Argument
	Required
	Default
	Description

	filename
	Yes
	None
	The path to a source input file.

Video Public methods:

	get_width() - Return the width of this video in pixels

	get_height() - Return the height of this video in pixels

Clip Constructor arguments:

	Argument
	Required
	Default
	Description

	video
	Yes
	None
	A Video object to extract this Clip from

	start
	No
	0
	The time in seconds from the start of the Video this Clip should begin at

	end
	No
	End of Video
	The time in seconds from the start of the Video this Clip should end at. NOTE: The end time is the absolute end time in the source Video, not relative to the start time of this Clip.

	display
	No
	None
	If specified, a Display object that determines how this Clip should be rendered

Clip Public methods:

	get_duration() - Return the width of this video in pixels

	get_height() - Return the height of this video in pixels

Video and Clip Examples:

video1 = vedit.Video("./media/video01.avi")
video2 = vedit.Video("./media/video02.wmv")

All of video 1
clip1_all = vedit.Clip(video1)

Bits of video2, with Display settings that override whatever the
Display settings of the Windows these are eventually included in.
vid2_display = Display(display_style=vedit.OVERLAY, include_audio=False)
From second 3-8.5
clip2_a = vedit.Clip(video2, start=3, end=8.5, display=vid2_display)
From second 12-40
clip2_b = vedit.Clip(video2, start=12, end=40, display=vid2_display)
From second 99 to the end
clip2_c = vedit.Clip(video2, start=99, display=vid2_display)

Back to Table of Contents

Watermarks

The Watermark object gives an easy way to place an image or
rectangle of a solid color on top of a resulting Window over a certain
time in the video.

Watermark objects are applied to a Window by sending a list of
them to the watermarks constructor argument for the Window, or
can be applied after construction by setting the .watermarks
attribute of a Window.

	NOTE: The image file of a watermark is used as is with no scaling,

	you must ensure the size of the watermark file is appropriate to the
size of the Window it is placed in.

Constructor arguments:

	Argument
	Required
	Default
	Description

	filename
	Yes
	None
	Path to an image file to use for the Watermark. Mutually exclusive with bgcolor.

	x
	No
	“0”
	Passed to the ffmpeg overlay filter’s x argument to position this watermark. Can be a simple numeric value which will be interpreted as a pixel offset from the left, or something more complex like: "main_w-overlay_w-10" to position near the right of the screen.

	y
	No
	“0”
	Passed to the ffmpeg overlay filter’s y argument to position this watermark. Can be a simple numeric value which will be interpreted as a pixel offset from the top, or something more complex like: "trunc((main_h-overlay_h)/2)" to position vertically center.

	fade_in_start
	No
	None
	If specified the watermark will begin to appear at fade_in_start seconds. Negative values are interpreted as offsets from the end of the video.

	fade_in_duration
	No
	None
	If specified, the watermark will fade in over this many seconds to full opacity.

	fade_out_start
	No
	None
	If specified, the watermark will begin to vanish at fade_out_start seconds. Negative values are interpreted as offsets from the end of the video.

	fade_out_duration
	No
	None
	If specified, the watermark will fade out over this many seconds to full transparency.

	bgcolor
	No
	None
	Mutually exclusive with filename. If specified, the width and height arguments are required, and the Watermark will take the form of a rectangle of that size and color.

Watermark Public methods: None

Watermark Examples:

Let's assume we have an existing Window we want to apply watermarks to.
window = vedit.Window(...)

And a watermark image.
watermark_file = "./media/watermark_corner.png"

Let's add the watermark image in the bottom right of the video.
watermark_image = vedit.Watermark(filename=watermark_file, x="main_w-overlay_w-10", y="main_h-overlay_h-10")

Let's fade in the window from white over 3 seconds.
white_intro = vedit.Watermark(bgcolor='White', width=window.width, height=window.height, fade_out_start=0, fade_out_duration=3)

Let's fade the window out to black over 5 seconds from the end of the video.
black_outro = vedit.Watermark(bgcolor='Black', width=window.width, height=window.height, fade_in_start=-5, fade_in_duration=5)

window.watermarks = [watermark_image, white_intro, black_outro]

window.render()

Back to Table of Contents

Audio

There are a few ways to manipulate the audio of the output:

	Each Clip can be configured to mix it’s audio into the output by virtue of configuring it with a Display configuration with include_audio=True (the default).

	Alternatively, if the Clip has no such configuration, the Window it is in can have a Display configuration with include_audio=True.

	Finally, each Window can have it’s own audio track via the audio_file constructor argument.

All Clip and Window who have audio present will see their audio mixed together in the output.

Finally, for Window objects with an audio_file argument, if the audio file is longer than the duration of the window, the volume of that audio_file stream will fade out over the last 5 seconds of the duration of the Window.

Back to Table of Contents

Logging Output

vedit produces lots of output through Python’s logging framework. Messages are at these levels:

	debug

	Everything, including command output from ffmpeg

	info

	Step by step notifications of commands run, but curtailing the output

	warn

	Only notices where vedit is making some determination about what to do with ambiguous inputs

To enable logging output from a script using vedit do something like:

import logging
logging.basicConfig()
log = logging.getLogger()
log.setLevel(logging.DEBUG)

Back to Table of Contents

Getting Help

File an issue on GitHub for this project https://github.com/digitalmacgyver/vedit/issues

Back to Table of Contents

Contributing

Feel free to fork and issue a pull request at: https://github.com/digitalmacgyver/vedit

Back to Table of Contents

Odds and Ends

	The first video stream encountered in a file is the one used, the rest are ignored.

	The first audio stream encountered in a file is the one used, the rest are ignored.

	The output Sample Aspect Ratio (SAR) for a Window can be set. All inputs and outputs are assumed to have the same SAR. If not set the SAR of the Video input will be used, or 1:1 will be used if there is no Video input.
	Some video files report strange Sample Aspect Ratio (SAR) via ffprobe. The nonsense SAR value of 0:1 is assumed to be 1:1. SAR ratios between 0.9 and 1.1 are assumed to be 1:1.

	The pixel format of the output can be set, the default is yuv420p.

	The output video frame rate will be set to 30000/1001

	The output will be encoded with the H.264 codec.

	The quality of the output video relative to the inputs is set by the ffmpeg -crf option with an argument of 16, which should be visually lossless.

	If all input clips have the same number of audio channels, those channels are in the output. In any other scenario the resultant video will have a single channel (mono) audio stream.

Back to Table of Contents

 Copyright 2016, Matthew Hayward.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	vedit 0.0.1rc1 documentation

 Python Module Index

 v

 			

 		
 v	

 	[image: -]
 	
 vedit	

 	
 	
 vedit.vedit	

 Copyright 2016, Matthew Hayward.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	vedit 0.0.1rc1 documentation

Index

 A
 | C
 | D
 | G
 | L
 | R
 | S
 | T
 | V
 | W
 | Z

A

 	

 	add_watermarks() (vedit.vedit.Window method)

 	

 	(vedit.Window method)

C

 	

 	cache_dict (vedit.vedit.Window attribute)

 	

 	(vedit.Window attribute)

 	cache_dict_file (vedit.vedit.Window attribute)

 	

 	(vedit.Window attribute)

 	clear_cache() (vedit.vedit.Window static method)

 	

 	(vedit.Window static method)

 	

 	Clip (class in vedit)

 	

 	(class in vedit.vedit)

 	clip_render() (vedit.vedit.Window method)

 	

 	(vedit.Window method)

 	compute_duration() (vedit.vedit.Window method)

 	

 	(vedit.Window method)

D

 	

 	Display (class in vedit)

 	

 	(class in vedit.vedit)

 	

 	distribute_clips() (in module vedit)

 	

 	(in module vedit.vedit)

G

 	

 	gen_background_video() (in module vedit)

 	

 	(in module vedit.vedit)

 	get_channels() (vedit.Clip method)

 	

 	(vedit.vedit.Clip method)

 	get_child_windows() (vedit.vedit.Window method)

 	

 	(vedit.Window method)

 	get_clip_hash() (vedit.vedit.Window method)

 	

 	(vedit.Window method)

 	get_display() (vedit.vedit.Window method)

 	

 	(vedit.Window method)

 	get_duration() (vedit.Clip method)

 	

 	(vedit.vedit.Clip method)

 	get_height() (vedit.vedit.Video method)

 	

 	(vedit.Video method)

 	

 	get_next_renderfile() (vedit.vedit.Window method)

 	

 	(vedit.Window method)

 	get_output_dimensions() (vedit.vedit.Window method)

 	

 	(vedit.Window method)

 	get_pan_clause() (vedit.vedit.Window method)

 	

 	(vedit.Window method)

 	get_pan_direction() (vedit.Display method)

 	

 	(vedit.vedit.Display method)

 	get_pix_fmt() (vedit.Clip method)

 	

 	(vedit.vedit.Clip method)

 	get_sar() (vedit.Clip method)

 	

 	(vedit.vedit.Clip method)

 	get_width() (vedit.vedit.Video method)

 	

 	(vedit.Video method)

L

 	

 	load_cache_dict() (vedit.vedit.Window static method)

 	

 	(vedit.Window static method)

R

 	

 	render() (vedit.vedit.Window method)

 	

 	(vedit.Window method)

 	

 	render_clips() (vedit.vedit.Window method)

 	

 	(vedit.Window method)

S

 	

 	save_cache_dict() (vedit.vedit.Window static method)

 	

 	(vedit.Window static method)

 	

 	set_tmpdir() (vedit.vedit.Window static method)

 	

 	(vedit.Window static method)

T

 	

 	tmpdir (vedit.vedit.Window attribute)

 	

 	(vedit.Window attribute)

V

 	

 	vedit (module)

 	vedit.vedit (module)

 	

 	Video (class in vedit)

 	

 	(class in vedit.vedit)

 	videos (vedit.vedit.Video attribute)

 	

 	(vedit.Video attribute)

W

 	

 	Watermark (class in vedit)

 	

 	(class in vedit.vedit)

 	

 	Window (class in vedit)

 	

 	(class in vedit.vedit)

Z

 	

 	z (vedit.vedit.Window attribute)

 	

 	(vedit.Window attribute)

 Copyright 2016, Matthew Hayward.
 Created using Sphinx 1.3.5.

 _static/up-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		vedit 0.0.1rc1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Matthew Hayward.
 Created using Sphinx 1.3.5.

source/vedit.html

 Navigation

 		
 index

 		
 modules |

 		vedit 0.0.1rc1 documentation »

vedit package

Submodules

vedit.vedit module

Utility for extracting clips from videos, and composing clips
together into arbitrary nested “windows” in an output.

Documentation at: https://github.com/digitalmacgyver/vedit

This module requires the ffmpeg binary from the FFmpeg project at
https://ffmpeg.org/

The ffmpeg command must have been compiled with support for the
libx264 video codec and the libfdk_aac audio codec, for example with
this configure command:

./configure –enable-gpl –enable-libx264 –enable-nonfree –enable-libfdk-aac

		
class vedit.vedit.Clip(video=None, start=0, end=None, display=None)[source]

		Bases: object

Clip objects represent a segment of a video which will be composed
with other Clip objects into some Window objects using some
Display settings and rendered into a result physical video file.

A Clip is a portion (or all) of a the underlying video represented
by a Video object.

Inputs:

		video - a Video object

		start - Defaults to 0, the time in seconds this clip begins in
the source Video

		end - If specified, the time in seconds this clip ends in the
source Video, defaults to the end of the Video

		display - If specified, the Display settings this clip should be
rendered with. If not specified this clip will fall back to the
default Display settings of the Window it is being rendered in.

		
get_channels()[source]

		Returns the number of channels in the audio for this video, None if
there is no audio.

		
get_duration()[source]

		Returns the duration, in seconds, of this Clip.

		
get_pix_fmt()[source]

		Returns the Pixel Format of the Video this Clip is from.

		
get_sar()[source]

		Returns the Sample Aspect Ratio (SAR) of the Video this Clip is
from.

		
class vedit.vedit.Display(display_style='pad', pad_bgcolor='Black', overlay_concurrency=3, overlay_direction='down', overlay_min_gap=4, pan_direction='alternate', include_audio=True)[source]

		Bases: object

Display objects allow for the configuration of how a Clip should
be displayed.

Whenever a Clip is rendered, it is rendered with the following
Display settings:

		If the Clip itself has a Display object, those settings are used.

		Otherwise, if the Window the Clip is being rendered in has a
Display object, those settings are used.

		Otherwise, the default Display settings are used.

The default Display settings are:

		display_style = PAD

		pad_bgcolor = ‘Black’

The display_style may be set to one of CROP, PAD, PAN, or OVERLAY.

If display_style is PAD, the pad_bgcolor may be set to any of the
colors named recognized by the ‘ffmpeg -colors’ or a RGB code in
hexadecimal “#RRGGBB” format.

If display_style is PAN then the pan_direction can bet set to one
of UP/RIGHT or DOWN/LEFT or ALTERNATE, it defaults to ALTERNATE.

If display_style is OVERLAY:

		overlay_direction can be one of LEFT/RIGHT/UP/DOWN and the
overlay_concurrency may be set. overlay_concurrency is roughly
how many clips can be on the screen at the same time during
overlays. Defaults to DOWN.

		overlay_concurrency lists the maximum number of clips that can
be actively cascading at one time. Defaults to 3.

		overlay_min_gap lists the minimum duration between when two
clips may be started to animate. Defaults to 4 seconds.

If include_audio is set to true the audio from this clip will be
included in the output, mixed together with whatever other audio
is present in concurrent clips.

NOTE: If overlay_min_gap is high relative to the length of videos,
there will be times when nothing is cascading and/or there are
fewer than overlay_concurrency clips cascading.

		
get_pan_direction()[source]

		

		
class vedit.vedit.Video(filename)[source]

		Bases: object

The Video object represents a video associated with a physical file on the filesystem.

A primary source if Clip objects is to cut them out of Video objects.

Inputs:
* Filename - Full OS path to a video file.

Outputs: None

		
get_height()[source]

		

		
get_width()[source]

		

		
videos = {}

		

		
class vedit.vedit.Watermark(filename=None, x='0', y='0', fade_in_start=None, fade_in_duration=None, fade_out_start=None, fade_out_duration=None, bgcolor=None, width=None, height=None)[source]

		Bases: object

A list of Watermark objects can be provided to a Window.

Each Watermark is either an image, or a rectangle of a solid color.

Each watermark will be overlayed on the Window when it is rendered
in the order they are present in that Window’s watermarks list.

If a watermark image is provided, it The is not scaled before
being placed on the Window, so you must ensure it is the
appropriate size.

If a image is not provided, then: bgcolor, width, and height must
be specified and will create a rectangle of that color and size as
the watermark (this can be used to fade a video to black, or fade
in from white for example).

The Watermark can be positioned with the x and y arguments, which
are passed to the ffmpeg overlay filter, so they can be simple
things like the pixel offset from the top left, or complicated
expressions like “main_w-overlay_w-10” to right justify the image,
or “trunc((main_h-overlay_h)/2)” to vertically center it.

By default the image is present for the whole video.

The appearance of the image can be set to:

		Begin at fade_in_start

		End at fade_out_start

Negative values of fade_in_start/fade_out_start are interpreted as
offsets from the end of the video, rather than from the beginning.

The Watermark can be made to gradually fade in or out by setting
the fade_in_duration or fade_out_duration.

		
class vedit.vedit.Window(windows=None, clips=None, bgcolor='Black', bgimage_file=None, width=1280, height=720, sample_aspect_ratio=None, pix_fmt=None, x=0, y=0, duration=None, z_index=None, watermarks=None, audio_file=None, audio_desc='', display=None, output_file='./output.mp4', overlay_batch_concurrency=16, force=False)[source]

		Bases: object

Window is the primary object to interact with.

A Window composes an arbitrary number of other Window and Clip
objects into a final video (and also maybe some images, sound
files, watermarks, etc.). Windows can contain Windows which
contain Windows etc.

Constructor arguments:

		windows - Optional list of other Window objects which are
children to this Window (may be manipulated after construction
by explicitly settings the .windows attribute on the returned
object).

		clips - Option list of Clip objects to be rendered in this
Window (may be manipulated after construction by explicitly
setting the .clips attribute of the returned object).

		display - An optional Display object to define how Clips should
be rendered in this window (overridden on a Clip by Clip basis
of their display argument). Defaults to the default Display()
object.

		bgcolor - Defaults to ‘Black’. In a variety of scenarios where
there is no Clip or image content in a region of a Window, what
color should that region be.

		bgimage_file - Defaults to None. In a variety of scenarios
where there are no Clips content in a region of the Window, what
should be shown instead.

		width - Defaults to 1280. Width in pixels of this Window.

		height - Defaults to 720. Height in pixels of this Window.

		x - Defaults to 0. The x coordinate of the top left pixel of
this Window within its immediate parent Window, if any, as
measured from the top left.

		y - Defaults to 0. The y coordinate of the top left pixel of
this Window within its immediate parent Window, if any, as
measured from the top left.

		audio_file. Optional. If specified, an audio track to play
along with the resultant video.

		audio_desc. Optional. If provided, text to display over the
end of the video for the last 5 seconds.

		duration - Optional. If specified the duration of the rendered
content of this Window.

Defaults to the length of the optional audio_file, or if
that is not provided then defaults to the maximum duration of
the rendered clips of this or any child windows.

The duration of a given set of clips is calculated as the larger
of:

		Either, the length of all non-OVERLAY clips concatenated
together

		Or the length of the display time of all OVERLAY clips given
their various staggered start times depending on the number of
clips, their overlay concurrency, their durations, etc.

If the specified duration is shorter than the content of clips
some clips will not be shown. If it is longer there will be
blank content at the end of the clips.

If the duration and the length of the audio_file differ, then
the audio file will fade out starting 5 seconds before the end
of the video.

		output_file - Defaults to ”./output.mp4” where the resulting
video from a call to render this Window will be created.

		z_index - Optional. If there are multiple windows being
rendered, ones with higher z_indexes are rendered on top of
others. If two windows have the same z_index which one ends up
on top is arbitrary. If not specified windows will have
increasing z_index in order of creation.

		watermarks - Optional. A list of Watermark image objects to
overlay on top of the resultant video.

		sample_aspect_ratio - Optional. The Sample Aspect Ratio (SAR)
for the rendered content of this Window. If specified, it must
be in “W:H” format. This should not be needed generally unless
you are encoding for TV broadcast or similar. Defaults to the
SAR if the input Video, or 1:1 if there is no input Video. If
multiple input videos have different SARs an Exception is
thrown, you must preprocess your inputs to all have the same
SAR.

		pix_fmt - Optional. The pixel format of this window, defaults
to yuv420p. All Windows that are rendered together must have
the same pix_fmt.

		overlay_batch_concurrency - Optional. Defaults to 16. An
internal parameter that controls how many overlays we will
attempt in one command line for FFMPEG. Increasing this value
may cause crashes and memory corruption errors, setting it lower
increases rendering time.

		force - Defaults to False, force regeneration of all video
content, ignoring what is in the cache.

NOTE: Window objects cache data both within and across program
invocations. Broadly this saves a ton of compute time by not
re-transcoding Clips whose results can’t change, but can result in
the wrong stuff if there are collisions in the cache.

If two Clips have the same elements here, they are assumed to be
the same in the Cache:

		Absolute path to the filename from the underlying Video object

		Clip start time

		Clip end time

		The display_style of the Clip as being rendered in this Window.

		Clip width

		Clip height

		Window pan_direction (only relevant if display_style is PAN and
pan_direction is ALTERNATE)

		The pixel format of this Window

If the Cache is incorrect (most likely because the underlying
contents of an input filename have changed), the cache should be
cleared by calling the static clear_cache method of the Window
class:

Window.clear_cache()

		
add_watermarks(watermarks, current)[source]

		

		
cache_dict = {}

		

		
cache_dict_file = 'cachedb'

		

		
static clear_cache()[source]

		Try to remove all the files in the tmpdir. This is necessary if,
for example, an input Video filename has new contents.

		
clip_render(clip, channels)[source]

		Render a single clip into the tmpdir according to the rules defined
by the appropriate Display object.

Returns the name of a file where the resulting rendered clip
is at.

		
compute_duration(clips, include_overlay_timing=False)[source]

		Don’t actually do anything, just report how long the clips will
take to render in this window.

Returns either a float (if include_overlay_timing is false), or
a tuple with the float and an array of overlay timing data.

The array of timing data has N elements, one for each clip of
type Overlay, and each element is a start time, end time
tuple.

The logic is:

Clips whose display_type is not OVERLAY are appended to one
another.

Clips whose display_type is OVERLAY cascade on top of those as
dictated by the number of them, their durations, and the
overlay_concurrency and overlay_min_gap their Displays have.

		
get_child_windows(include_self=False)[source]

		Recursively get the list of all child windows.

		
get_clip_hash(clip, width, height, pan_direction='', pix_fmt='yuv420p', include_audio=True)[source]

		It can be very time consuming to produce a clip from a video, we
endeavor here to not do the same work over and over if it’s
not needed.

		
get_display(clip)[source]

		Internal utility function to get the Display properties for this
Clip being rendered in this Window. The logic is:

		If the Clip was created with a Display object, use that.

		Otherwise, if the Window was created with a Display object, use that.

		Otherwise, use the default Display object.

		
get_next_renderfile()[source]

		Internal utility function, we need to generate a bunch of
intermediate files, this generates unique names for them.

		
get_output_dimensions(cw, ch, ww, wh, operator)[source]

		

		
get_pan_clause(clip, direction, c, w)[source]

		

		
static load_cache_dict()[source]

		If a given Clip is reused across several program invocations, we
save time by not recreating it. We store information about
what Clips we have around here.

		
render(helper=False, audio_channels=None)[source]

		If helper is true we’re rendering a sub-window, the result of which
is an intermediate file stored in the tmpdir somewhere. If
helper is False then we are rendering user output, and it will
go in the path specified by self.output_file.

		
render_clips(clips, background_file, audio_channels)[source]

		Render the clips for the current window.

Inputs:

self - The current Window

clips - a list of clips to render

background_file - Path to a video file with a background for
any OVERLAY clips to be rendered onto, this is returned if the
clips argument is the empty list

For each clip we:

1. Check in our cache to see if we already have a version of
this clip in the appropriate resolution.

2. If there is a cache miss, produce a clip of the appropriate
resolution and cache it.

3. Concatenate and overlay the following clips according to
this procedure:

We process the Clips in order in self.clips, and concatenate
all the non-OVERLAY clips to one another.

Then we overlay the OVERLAY clips on top, starting at the
beginning.

The return value is a file of rendered video, either that
containing the clips, or just the background_file itself if
there were no clips.

		
static save_cache_dict()[source]

		If a given Clip is reused across several program invocations, we
save time by not recreating it. We store information about
what Clips we have around here.

		
static set_tmpdir(tmpdir)[source]

		

		
tmpdir = '/tmp/docs/vedit/'

		

		
z = 0

		

		
vedit.vedit.distribute_clips(clips, windows, min_duration=None, randomize_clips=False)[source]

		Utility function for creating collage videos of a set of clips.

Input/Output parameters:

		windows - A list of vsum.Window objects to distribute the clips
among. These Window objects are modified by having whatever
clips this function determines to send to them added to the end
of their clips list.

Inputs:

		clips - A list of vsum.Clip objects to distribute

		min_duration - If set to a numeric value the clips will be
repeated over and over until the desired min_duration is met.
Otherwise each clip is shown once and the resulting duration is
a function of the resulting length within each window.

NOTE: If min_duration is set, once it is obtained no more clips
will be added to the result, and some input clips may be unused
in that scenario.

		randomize_clips - If true the input clips array will have it’s
contents randomized prior to being distributed, otherwise the
resulting clips will be shown in order.

The main idea is that a set of “windows” will be defined, such as
this:

+--+
| Window 1 |
| +-------------------------+ |
	Window 2	+---------+		
			Window 3	
	+------------			
+---------------	Window 4			
	+---------+			
		Window 5	+---------+	
	+---------+			
+--------------+				
+--+

And clips will be distributed among them.

This attempts to place clips in the window whose aspect ratio is a
close match for the clip, while also balancing the total content
duration of the clips in the windows (note: this can be different
from the total duration of the rendered window when cascading
clips are used).

The exact logic used to distribute clips is:

1. Get a prioritize list of windows to put the clip in, the
windows are prioritized first by having the closest aspect ratio
to the clip, and then among windows with the same aspect ratio
from lowest window duration to longest.

2. Then, we walk down this prioritized list and place this clip in
the first window such that both:

		(window_duration + clip_duration) <= 1.2*(minimum_window_duration + clip_duration)

		and, if min_duration is set:

		window_duration < min_duration

		
vedit.vedit.gen_background_video(duration, width=1280, height=720, bgcolor='Black', bgimage_file=None, output_file=None)[source]

		Create a video file of the desired properties.

Inputs:

		duration - Time in seconds of the video

		width / height - Width / height in pixels of the video - these
are overridden if bgimage_file is provided.

		bgcolor - The background color of the video

		bgimage_file - Optional, if specified the video should consist
of this image rather than a solid color, if specified the
dimensions of the image determine the width and height.

		output_file - If specified, the resulting file will be copied to
this location.

Outputs: Returns a string denoting the filesystem path where the
resulting video can be found (which will differ from output_file).

Module contents

		
class vedit.Display(display_style='pad', pad_bgcolor='Black', overlay_concurrency=3, overlay_direction='down', overlay_min_gap=4, pan_direction='alternate', include_audio=True)[source]

		Bases: object

Display objects allow for the configuration of how a Clip should
be displayed.

Whenever a Clip is rendered, it is rendered with the following
Display settings:

		If the Clip itself has a Display object, those settings are used.

		Otherwise, if the Window the Clip is being rendered in has a
Display object, those settings are used.

		Otherwise, the default Display settings are used.

The default Display settings are:

		display_style = PAD

		pad_bgcolor = ‘Black’

The display_style may be set to one of CROP, PAD, PAN, or OVERLAY.

If display_style is PAD, the pad_bgcolor may be set to any of the
colors named recognized by the ‘ffmpeg -colors’ or a RGB code in
hexadecimal “#RRGGBB” format.

If display_style is PAN then the pan_direction can bet set to one
of UP/RIGHT or DOWN/LEFT or ALTERNATE, it defaults to ALTERNATE.

If display_style is OVERLAY:

		overlay_direction can be one of LEFT/RIGHT/UP/DOWN and the
overlay_concurrency may be set. overlay_concurrency is roughly
how many clips can be on the screen at the same time during
overlays. Defaults to DOWN.

		overlay_concurrency lists the maximum number of clips that can
be actively cascading at one time. Defaults to 3.

		overlay_min_gap lists the minimum duration between when two
clips may be started to animate. Defaults to 4 seconds.

If include_audio is set to true the audio from this clip will be
included in the output, mixed together with whatever other audio
is present in concurrent clips.

NOTE: If overlay_min_gap is high relative to the length of videos,
there will be times when nothing is cascading and/or there are
fewer than overlay_concurrency clips cascading.

		
get_pan_direction()[source]

		

		
class vedit.Video(filename)[source]

		Bases: object

The Video object represents a video associated with a physical file on the filesystem.

A primary source if Clip objects is to cut them out of Video objects.

Inputs:
* Filename - Full OS path to a video file.

Outputs: None

		
get_height()[source]

		

		
get_width()[source]

		

		
videos = {}

		

		
class vedit.Clip(video=None, start=0, end=None, display=None)[source]

		Bases: object

Clip objects represent a segment of a video which will be composed
with other Clip objects into some Window objects using some
Display settings and rendered into a result physical video file.

A Clip is a portion (or all) of a the underlying video represented
by a Video object.

Inputs:

		video - a Video object

		start - Defaults to 0, the time in seconds this clip begins in
the source Video

		end - If specified, the time in seconds this clip ends in the
source Video, defaults to the end of the Video

		display - If specified, the Display settings this clip should be
rendered with. If not specified this clip will fall back to the
default Display settings of the Window it is being rendered in.

		
get_channels()[source]

		Returns the number of channels in the audio for this video, None if
there is no audio.

		
get_duration()[source]

		Returns the duration, in seconds, of this Clip.

		
get_pix_fmt()[source]

		Returns the Pixel Format of the Video this Clip is from.

		
get_sar()[source]

		Returns the Sample Aspect Ratio (SAR) of the Video this Clip is
from.

		
class vedit.Window(windows=None, clips=None, bgcolor='Black', bgimage_file=None, width=1280, height=720, sample_aspect_ratio=None, pix_fmt=None, x=0, y=0, duration=None, z_index=None, watermarks=None, audio_file=None, audio_desc='', display=None, output_file='./output.mp4', overlay_batch_concurrency=16, force=False)[source]

		Bases: object

Window is the primary object to interact with.

A Window composes an arbitrary number of other Window and Clip
objects into a final video (and also maybe some images, sound
files, watermarks, etc.). Windows can contain Windows which
contain Windows etc.

Constructor arguments:

		windows - Optional list of other Window objects which are
children to this Window (may be manipulated after construction
by explicitly settings the .windows attribute on the returned
object).

		clips - Option list of Clip objects to be rendered in this
Window (may be manipulated after construction by explicitly
setting the .clips attribute of the returned object).

		display - An optional Display object to define how Clips should
be rendered in this window (overridden on a Clip by Clip basis
of their display argument). Defaults to the default Display()
object.

		bgcolor - Defaults to ‘Black’. In a variety of scenarios where
there is no Clip or image content in a region of a Window, what
color should that region be.

		bgimage_file - Defaults to None. In a variety of scenarios
where there are no Clips content in a region of the Window, what
should be shown instead.

		width - Defaults to 1280. Width in pixels of this Window.

		height - Defaults to 720. Height in pixels of this Window.

		x - Defaults to 0. The x coordinate of the top left pixel of
this Window within its immediate parent Window, if any, as
measured from the top left.

		y - Defaults to 0. The y coordinate of the top left pixel of
this Window within its immediate parent Window, if any, as
measured from the top left.

		audio_file. Optional. If specified, an audio track to play
along with the resultant video.

		audio_desc. Optional. If provided, text to display over the
end of the video for the last 5 seconds.

		duration - Optional. If specified the duration of the rendered
content of this Window.

Defaults to the length of the optional audio_file, or if
that is not provided then defaults to the maximum duration of
the rendered clips of this or any child windows.

The duration of a given set of clips is calculated as the larger
of:

		Either, the length of all non-OVERLAY clips concatenated
together

		Or the length of the display time of all OVERLAY clips given
their various staggered start times depending on the number of
clips, their overlay concurrency, their durations, etc.

If the specified duration is shorter than the content of clips
some clips will not be shown. If it is longer there will be
blank content at the end of the clips.

If the duration and the length of the audio_file differ, then
the audio file will fade out starting 5 seconds before the end
of the video.

		output_file - Defaults to ”./output.mp4” where the resulting
video from a call to render this Window will be created.

		z_index - Optional. If there are multiple windows being
rendered, ones with higher z_indexes are rendered on top of
others. If two windows have the same z_index which one ends up
on top is arbitrary. If not specified windows will have
increasing z_index in order of creation.

		watermarks - Optional. A list of Watermark image objects to
overlay on top of the resultant video.

		sample_aspect_ratio - Optional. The Sample Aspect Ratio (SAR)
for the rendered content of this Window. If specified, it must
be in “W:H” format. This should not be needed generally unless
you are encoding for TV broadcast or similar. Defaults to the
SAR if the input Video, or 1:1 if there is no input Video. If
multiple input videos have different SARs an Exception is
thrown, you must preprocess your inputs to all have the same
SAR.

		pix_fmt - Optional. The pixel format of this window, defaults
to yuv420p. All Windows that are rendered together must have
the same pix_fmt.

		overlay_batch_concurrency - Optional. Defaults to 16. An
internal parameter that controls how many overlays we will
attempt in one command line for FFMPEG. Increasing this value
may cause crashes and memory corruption errors, setting it lower
increases rendering time.

		force - Defaults to False, force regeneration of all video
content, ignoring what is in the cache.

NOTE: Window objects cache data both within and across program
invocations. Broadly this saves a ton of compute time by not
re-transcoding Clips whose results can’t change, but can result in
the wrong stuff if there are collisions in the cache.

If two Clips have the same elements here, they are assumed to be
the same in the Cache:

		Absolute path to the filename from the underlying Video object

		Clip start time

		Clip end time

		The display_style of the Clip as being rendered in this Window.

		Clip width

		Clip height

		Window pan_direction (only relevant if display_style is PAN and
pan_direction is ALTERNATE)

		The pixel format of this Window

If the Cache is incorrect (most likely because the underlying
contents of an input filename have changed), the cache should be
cleared by calling the static clear_cache method of the Window
class:

Window.clear_cache()

		
add_watermarks(watermarks, current)[source]

		

		
cache_dict = {}

		

		
cache_dict_file = 'cachedb'

		

		
static clear_cache()[source]

		Try to remove all the files in the tmpdir. This is necessary if,
for example, an input Video filename has new contents.

		
clip_render(clip, channels)[source]

		Render a single clip into the tmpdir according to the rules defined
by the appropriate Display object.

Returns the name of a file where the resulting rendered clip
is at.

		
compute_duration(clips, include_overlay_timing=False)[source]

		Don’t actually do anything, just report how long the clips will
take to render in this window.

Returns either a float (if include_overlay_timing is false), or
a tuple with the float and an array of overlay timing data.

The array of timing data has N elements, one for each clip of
type Overlay, and each element is a start time, end time
tuple.

The logic is:

Clips whose display_type is not OVERLAY are appended to one
another.

Clips whose display_type is OVERLAY cascade on top of those as
dictated by the number of them, their durations, and the
overlay_concurrency and overlay_min_gap their Displays have.

		
get_child_windows(include_self=False)[source]

		Recursively get the list of all child windows.

		
get_clip_hash(clip, width, height, pan_direction='', pix_fmt='yuv420p', include_audio=True)[source]

		It can be very time consuming to produce a clip from a video, we
endeavor here to not do the same work over and over if it’s
not needed.

		
get_display(clip)[source]

		Internal utility function to get the Display properties for this
Clip being rendered in this Window. The logic is:

		If the Clip was created with a Display object, use that.

		Otherwise, if the Window was created with a Display object, use that.

		Otherwise, use the default Display object.

		
get_next_renderfile()[source]

		Internal utility function, we need to generate a bunch of
intermediate files, this generates unique names for them.

		
get_output_dimensions(cw, ch, ww, wh, operator)[source]

		

		
get_pan_clause(clip, direction, c, w)[source]

		

		
static load_cache_dict()[source]

		If a given Clip is reused across several program invocations, we
save time by not recreating it. We store information about
what Clips we have around here.

		
render(helper=False, audio_channels=None)[source]

		If helper is true we’re rendering a sub-window, the result of which
is an intermediate file stored in the tmpdir somewhere. If
helper is False then we are rendering user output, and it will
go in the path specified by self.output_file.

		
render_clips(clips, background_file, audio_channels)[source]

		Render the clips for the current window.

Inputs:

self - The current Window

clips - a list of clips to render

background_file - Path to a video file with a background for
any OVERLAY clips to be rendered onto, this is returned if the
clips argument is the empty list

For each clip we:

1. Check in our cache to see if we already have a version of
this clip in the appropriate resolution.

2. If there is a cache miss, produce a clip of the appropriate
resolution and cache it.

3. Concatenate and overlay the following clips according to
this procedure:

We process the Clips in order in self.clips, and concatenate
all the non-OVERLAY clips to one another.

Then we overlay the OVERLAY clips on top, starting at the
beginning.

The return value is a file of rendered video, either that
containing the clips, or just the background_file itself if
there were no clips.

		
static save_cache_dict()[source]

		If a given Clip is reused across several program invocations, we
save time by not recreating it. We store information about
what Clips we have around here.

		
static set_tmpdir(tmpdir)[source]

		

		
tmpdir = '/tmp/docs/vedit/'

		

		
z = 0

		

		
class vedit.Watermark(filename=None, x='0', y='0', fade_in_start=None, fade_in_duration=None, fade_out_start=None, fade_out_duration=None, bgcolor=None, width=None, height=None)[source]

		Bases: object

A list of Watermark objects can be provided to a Window.

Each Watermark is either an image, or a rectangle of a solid color.

Each watermark will be overlayed on the Window when it is rendered
in the order they are present in that Window’s watermarks list.

If a watermark image is provided, it The is not scaled before
being placed on the Window, so you must ensure it is the
appropriate size.

If a image is not provided, then: bgcolor, width, and height must
be specified and will create a rectangle of that color and size as
the watermark (this can be used to fade a video to black, or fade
in from white for example).

The Watermark can be positioned with the x and y arguments, which
are passed to the ffmpeg overlay filter, so they can be simple
things like the pixel offset from the top left, or complicated
expressions like “main_w-overlay_w-10” to right justify the image,
or “trunc((main_h-overlay_h)/2)” to vertically center it.

By default the image is present for the whole video.

The appearance of the image can be set to:

		Begin at fade_in_start

		End at fade_out_start

Negative values of fade_in_start/fade_out_start are interpreted as
offsets from the end of the video, rather than from the beginning.

The Watermark can be made to gradually fade in or out by setting
the fade_in_duration or fade_out_duration.

		
vedit.distribute_clips(clips, windows, min_duration=None, randomize_clips=False)[source]

		Utility function for creating collage videos of a set of clips.

Input/Output parameters:

		windows - A list of vsum.Window objects to distribute the clips
among. These Window objects are modified by having whatever
clips this function determines to send to them added to the end
of their clips list.

Inputs:

		clips - A list of vsum.Clip objects to distribute

		min_duration - If set to a numeric value the clips will be
repeated over and over until the desired min_duration is met.
Otherwise each clip is shown once and the resulting duration is
a function of the resulting length within each window.

NOTE: If min_duration is set, once it is obtained no more clips
will be added to the result, and some input clips may be unused
in that scenario.

		randomize_clips - If true the input clips array will have it’s
contents randomized prior to being distributed, otherwise the
resulting clips will be shown in order.

The main idea is that a set of “windows” will be defined, such as
this:

+--+
| Window 1 |
| +-------------------------+ |
	Window 2	+---------+		
			Window 3	
	+------------			
+---------------	Window 4			
	+---------+			
		Window 5	+---------+	
	+---------+			
+--------------+				
+--+

And clips will be distributed among them.

This attempts to place clips in the window whose aspect ratio is a
close match for the clip, while also balancing the total content
duration of the clips in the windows (note: this can be different
from the total duration of the rendered window when cascading
clips are used).

The exact logic used to distribute clips is:

1. Get a prioritize list of windows to put the clip in, the
windows are prioritized first by having the closest aspect ratio
to the clip, and then among windows with the same aspect ratio
from lowest window duration to longest.

2. Then, we walk down this prioritized list and place this clip in
the first window such that both:

		(window_duration + clip_duration) <= 1.2*(minimum_window_duration + clip_duration)

		and, if min_duration is set:

		window_duration < min_duration

		
vedit.gen_background_video(duration, width=1280, height=720, bgcolor='Black', bgimage_file=None, output_file=None)[source]

		Create a video file of the desired properties.

Inputs:

		duration - Time in seconds of the video

		width / height - Width / height in pixels of the video - these
are overridden if bgimage_file is provided.

		bgcolor - The background color of the video

		bgimage_file - Optional, if specified the video should consist
of this image rather than a solid color, if specified the
dimensions of the image determine the width and height.

		output_file - If specified, the resulting file will be copied to
this location.

Outputs: Returns a string denoting the filesystem path where the
resulting video can be found (which will differ from output_file).

 © Copyright 2016, Matthew Hayward.
 Created using Sphinx 1.3.5.

_static/minus.png

source/modules.html

 Navigation

 		
 index

 		
 modules |

 		vedit 0.0.1rc1 documentation »

vedit

		vedit package
		Submodules

		vedit.vedit module

		Module contents

 © Copyright 2016, Matthew Hayward.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		vedit 0.0.1rc1 documentation »

 All modules for which code is available

		vedit.vedit

 © Copyright 2016, Matthew Hayward.
 Created using Sphinx 1.3.5.

_modules/vedit/vedit.html

 Navigation

 		
 index

 		
 modules |

 		vedit 0.0.1rc1 documentation »

 		Module code »

 Source code for vedit.vedit

#!/usr/bin/env python

'''Utility for extracting clips from videos, and composing clips
together into arbitrary nested "windows" in an output.

Documentation at: https://github.com/digitalmacgyver/vedit

This module requires the ffmpeg binary from the FFmpeg project at
https://ffmpeg.org/

The ffmpeg command must have been compiled with support for the
libx264 video codec and the libfdk_aac audio codec, for example with
this configure command:

./configure --enable-gpl --enable-libx264 --enable-nonfree --enable-libfdk-aac

'''

import collections
import getpass
import glob
import hashlib
import json
import logging
import os
import random
import re
import shutil
from future import standard_library
standard_library.install_aliases()
import subprocess
import tempfile
import uuid

log = logging.getLogger(__name__)

##
##
##
Configuration settings.
##
##
##

The FFMPEG command to use, this will use whatever is in the path.
#
This module requires the ffmpeg binary from the FFmpeg project at
https://ffmpeg.org/
#
The ffmpeg command must have been compiled with support for the
libx264 video codec and the libfdk_aac audio codec, for example with
this configure command:
./configure --enable-gpl --enable-libx264 --enable-nonfree --enable-libfdk-aac
#
The ffmpeg binary that for a short time was published by the libav
project is not supported.
#
If the path where this script is run does not have these binaries,
the full path to them can be updated here.

FFMPEG = 'ffmpeg'
FFPROBE = 'ffprobe'

"Constant" Clip display styles.
#
Do not change these.
#
#
These DISPLAY_TYPES are used to configure Display objects, which in
turn define how Clip objects behave when embedded in a Window.

Each Clip has a pixel width and a height, and each Window has a
width and a height.
#
If the Clip and Window do not have identical width and height,
something must be done to render that Clip within that Window.

For Clip objects, a DISPLAY_STYLE of:
#
* CROP - The Clip is scaled in size while preserving its aspect
ratio to the smallest size such that both its width and
height meet or exceed the width and height of the Window it
is placed in. If any portion of the resulting scaled Clip
is larger than the Window (which will be the case unless
the Clip and Window have the same aspect ratio), the Clip
will be cropped. The center of the Clip will be placed at
the center of the Window.
#
* PAD - The Clip is scaled in size while preserving its aspect ratio
to the largest size such that both its width and height are
smaller than or equal to the width and height of the window
it is placed in. If the dimensions of the scaled Clip are
smaller than the Window (which will be the case unless the
Clip and Window have the same aspect ratio), the Clip will
be padded onto the solid background of color pad_bgcolor set
for the Display object. The center of the Clip will be
placed at the center of the Window.
#
* PAN - The Clip is scaled in size while preserving its aspect ratio
to the smallest size such that both its width and height
meet or exceed the width and height of the Window it is
placed in. If any portion of the resulting scaled Clip is
larger than the Window (which will be the case unless the
Clip and Window have the same aspect ratio), then as the
clip plays it will be animated panning to show the entire
clip as the clip plays. The direction the clip is panned
depend on whether the Clip is wider than the Window, or
taller than the Window, the setting of the Display's
pan_direction, and the pan direction of the prior clip in
the case that pan_direction was ALTERNATE.
#
* OVERLAY - If the Display display_style is OVERLAY a complex
behavior is created where clips are shrunk down to fill
only a part of the window, and then animated to cascade
across the window over the duration of their play time.
The OVERLAY mode has lots of additional behaviors, in
part dictated by he various OVERLAY_DIRECTIONS
OVERLAY = "overlay"
CROP = "crop"
PAD = "pad"
PAN = "pan"
DISPLAY_STYLES = [OVERLAY, CROP, PAD, PAN]

"Constant" clip overlay and pan values.
#
Do not change these.
#
For the Display display_style of OVERLAY, then DOWN, LEFT, RIGHT, UP
controls which direction the clip is animated moving over it's
runtime.
DOWN = "down" # Down and right are synonyms for pan directions.
LEFT = "left" # Left and up are synonyms for pan directions.
RIGHT = "right"
UP = "up"
OVERLAY_DIRECTIONS = [DOWN, LEFT, RIGHT, UP]

Constant clip pan values.
#
Do not change these
#
For the Display display_style of PAN, then DOWN/RIGHT and or UP/LEFT
dictate the direction to pan (which of these is in effect depends on
whether the Clip is wider, or taller, than the Window it is placed
in.
#
For the PAN display_style, if the Clip's pan_direction is ALTERNATE,
then it will pan in the opposite direction of the prior clip than
panned in the same window.
#
ALTERNATE = "alternate"
PAN_DIRECTIONS = [ALTERNATE, DOWN, UP]

##
##
##
Classes for rendering videos.
##
##
##

##
[docs]class Display(object):
 '''Display objects allow for the configuration of how a Clip should
 be displayed.

 Whenever a Clip is rendered, it is rendered with the following
 Display settings:

 - If the Clip itself has a Display object, those settings are used.
 - Otherwise, if the Window the Clip is being rendered in has a
 Display object, those settings are used.
 - Otherwise, the default Display settings are used.

 The default Display settings are:

 - display_style = PAD
 - pad_bgcolor = 'Black'

 The display_style may be set to one of CROP, PAD, PAN, or OVERLAY.

 If display_style is PAD, the pad_bgcolor may be set to any of the
 colors named recognized by the 'ffmpeg -colors' or a RGB code in
 hexadecimal "#RRGGBB" format.

 If display_style is PAN then the pan_direction can bet set to one
 of UP/RIGHT or DOWN/LEFT or ALTERNATE, it defaults to ALTERNATE.

 If display_style is OVERLAY:

 - overlay_direction can be one of LEFT/RIGHT/UP/DOWN and the
 overlay_concurrency may be set. overlay_concurrency is roughly
 how many clips can be on the screen at the same time during
 overlays. Defaults to DOWN.
 - overlay_concurrency lists the maximum number of clips that can
 be actively cascading at one time. Defaults to 3.
 - overlay_min_gap lists the minimum duration between when two
 clips may be started to animate. Defaults to 4 seconds.

 If include_audio is set to true the audio from this clip will be
 included in the output, mixed together with whatever other audio
 is present in concurrent clips.

 NOTE: If overlay_min_gap is high relative to the length of videos,
 there will be times when nothing is cascading and/or there are
 fewer than overlay_concurrency clips cascading.

 '''

 def __init__(self,
 display_style = PAD,
 pad_bgcolor = 'Black',
 overlay_concurrency = 3,
 overlay_direction = DOWN,
 overlay_min_gap = 4,
 pan_direction = ALTERNATE,
 include_audio = True):

 if display_style in DISPLAY_STYLES:
 self.display_style = display_style
 else:
 raise Exception("Invalid display style: %s, valid display styles are: %s" % (display_style, DISPLAY_STYLES))

 # OVERLAY display_style stuff.
 if overlay_direction in OVERLAY_DIRECTIONS:
 self.overlay_direction = overlay_direction
 else:
 raise Exception("Invalid overlay direction: %s, valid overlay directions are: %s" % (overlay_direction, OVERLAY_DIRECTIONS))

 self.overlay_concurrency = overlay_concurrency

 self.overlay_min_gap = overlay_min_gap

 # PAN display_style stuff.
 if pan_direction == RIGHT:
 self.pan_direction = DOWN
 elif pan_direction == LEFT:
 self.pan_direction = UP
 elif pan_direction in PAN_DIRECTIONS:
 self.pan_direction = pan_direction
 else:
 raise Exception("Invalid pan direction: %s, valid pan directions are: %s" % (pan_direction, PAN_DIRECTIONS))

 self.prior_pan = UP

 # PAD display_style stuff.
 self.pad_bgcolor = pad_bgcolor

 self.include_audio = include_audio

 # A given Display object alternates the direction of pans when
 # display_type is PAN for each time an object is rendered with it.
 #
 # This is most useful when a Display is associated with a Window,
 # and that Window has multiple Clips and the desire is to
 # alternate pan_directions in that window.
 #
 # It also works for a given Clip, but that would require that
 # single Clip be rendered at least twice in a given context.
[docs] def get_pan_direction(self):
 if self.pan_direction == ALTERNATE:
 if self.prior_pan == UP:
 self.prior_pan = DOWN
 return DOWN
 else:
 self.prior_pan = UP
 return UP
 else:
 self.prior_pan = self.pan_direction
 return self.pan_direction

##
[docs]class Video(object):
 '''
 The Video object represents a video associated with a physical file on the filesystem.

 A primary source if Clip objects is to cut them out of Video objects.

 Inputs:
 * Filename - Full OS path to a video file.

 Outputs: None

 '''

 # Class static variable, whenever we get a new Video object we do
 # some FFPROBE calls to find out metadata about that video, but we
 # do it only once filesystem file no matter how many times the
 # object is created.
 #
 # NOTE - it is not supported to invoke Video for different file
 # contents at the same filename over the course of the program.
 videos = {}

 def __init__(self,
 filename):

 if not os.path.exists(filename):
 raise Exception("No video found at: %s" % (filename))
 else:
 self.filename = filename

 file_info = os.stat(filename)

 # Check out static cache of Video data to see if we know about
 # this file already.
 if filename in Video.videos and file_info.st_size == Video.videos[filename]['st_size'] and file_info.st_mtime == Video.videos[filename]['st_mtime']:
 self.st_size = file_info.st_size
 self.st_mtime = file_info.st_mtime
 self.width = Video.videos[filename]['width']
 self.height = Video.videos[filename]['height']
 self.duration = Video.videos[filename]['duration']
 self.sample_aspect_ratio = Video.videos[filename]['sample_aspect_ratio']
 self.pix_fmt = Video.videos[filename]['pix_fmt']
 self.channels = Video.videos[filename]['channels']
 else:
 # Collect file metadata with FFPROBE.
 (status, output) = subprocess.getstatusoutput("%s -v quiet -print_format json -show_streams %s" % (FFPROBE, filename))
 info = json.loads(output)
 for stream in info['streams']:
 if stream['codec_type'] == 'video':
 self.duration = float(stream['duration'])
 self.width = int(stream['width'])
 self.height = int(stream['height'])
 self.sample_aspect_ratio = stream.get('sample_aspect_ratio', '')
 if self.sample_aspect_ratio == '0:1':
 log.warn("Nonsense SAR value of 0:1 detected, assuming SAR is 1:1.")
 self.sample_aspect_ratio = '1:1'
 else:
 # Deal with weird files with rounding error SARs like 649:639.
 (sarwidth, sarheight) = self.sample_aspect_ratio.split(':')
 if (sarwidth != sarheight) and abs((float(sarwidth) / float(sarheight)) - 1) < 0.1:
 log.warn("Strange SAR value of %s:%s detected, setting SAR to 1:1." % (sarwidth, sarheight))
 self.sample_aspect_ratio = '1:1'
 self.pix_fmt = stream.get('pix_fmt', '')
 break

 self.channels = None
 for stream in info['streams']:
 if stream['codec_type'] == 'audio':
 self.channels = int(stream['channels'])

 self.st_size = file_info.st_size
 self.st_mtime = file_info.st_mtime

 Video.videos[filename] = { 'width' : self.width,
 'height' : self.height,
 'duration' : self.duration,
 'sample_aspect_ratio' : self.sample_aspect_ratio,
 'pix_fmt' : self.pix_fmt,
 'channels' : self.channels,
 'st_size' : self.st_size,
 'st_mtime' : self.st_mtime }

[docs] def get_width(self):
 return self.width

[docs] def get_height(self):
 return self.height

[docs]class Clip(object):
 '''Clip objects represent a segment of a video which will be composed
 with other Clip objects into some Window objects using some
 Display settings and rendered into a result physical video file.

 A Clip is a portion (or all) of a the underlying video represented
 by a Video object.

 Inputs:

 - video - a Video object
 - start - Defaults to 0, the time in seconds this clip begins in
 the source Video
 - end - If specified, the time in seconds this clip ends in the
 source Video, defaults to the end of the Video
 - display - If specified, the Display settings this clip should be
 rendered with. If not specified this clip will fall back to the
 default Display settings of the Window it is being rendered in.

 '''

 def __init__(self,
 video = None,
 start = 0,
 end = None,
 display = None):
 if video is None:
 raise Exception("Clip constructor requires a video argument.")

 self.video = video

 self.start = max(float(start), 0)

 if self.start >= video.duration:
 raise Exception("Error, asked to start clip at %f but video %s is only %f long." % (start, video.filename , video.duration))

 if end is not None and end > video.duration:
 raise Exception("Error, asked to end clip at %f but video %s is only %f long." % (end, video.filename , video.duration))

 if end is not None and end <= start:
 raise Exception("Error, asked to end clip at %f which is less than or equal to the start of %f." % (end, start))

 if end is None:
 self.end = video.duration
 else:
 # Technically this min is unnecessary due to the exception
 # handling above, but it's here to clarify the valid
 # values.
 self.end = min(float(end), video.duration)

 # It's OK for this to be None.
 self.display = display

[docs] def get_duration(self):
 '''Returns the duration, in seconds, of this Clip.'''
 return self.end - self.start

[docs] def get_channels(self):
 '''Returns the number of channels in the audio for this video, None if
 there is no audio.

 '''
 return self.video.channels

[docs] def get_sar(self):
 '''Returns the Sample Aspect Ratio (SAR) of the Video this Clip is
 from.'''
 return self.video.sample_aspect_ratio

[docs] def get_pix_fmt(self):
 '''Returns the Pixel Format of the Video this Clip is from.'''
 return self.video.pix_fmt

[docs]class Window(object):
 '''Window is the primary object to interact with.

 A Window composes an arbitrary number of other Window and Clip
 objects into a final video (and also maybe some images, sound
 files, watermarks, etc.). Windows can contain Windows which
 contain Windows etc.

 Constructor arguments:

 - windows - Optional list of other Window objects which are
 children to this Window (may be manipulated after construction
 by explicitly settings the .windows attribute on the returned
 object).
 - clips - Option list of Clip objects to be rendered in this
 Window (may be manipulated after construction by explicitly
 setting the .clips attribute of the returned object).
 - display - An optional Display object to define how Clips should
 be rendered in this window (overridden on a Clip by Clip basis
 of their display argument). Defaults to the default Display()
 object.
 - bgcolor - Defaults to 'Black'. In a variety of scenarios where
 there is no Clip or image content in a region of a Window, what
 color should that region be.
 - bgimage_file - Defaults to None. In a variety of scenarios
 where there are no Clips content in a region of the Window, what
 should be shown instead.
 - width - Defaults to 1280. Width in pixels of this Window.
 - height - Defaults to 720. Height in pixels of this Window.
 - x - Defaults to 0. The x coordinate of the top left pixel of
 this Window within its immediate parent Window, if any, as
 measured from the top left.
 - y - Defaults to 0. The y coordinate of the top left pixel of
 this Window within its immediate parent Window, if any, as
 measured from the top left.
 - audio_file. Optional. If specified, an audio track to play
 along with the resultant video.
 - audio_desc. Optional. If provided, text to display over the
 end of the video for the last 5 seconds.
 - duration - Optional. If specified the duration of the rendered
 content of this Window.

 Defaults to the length of the optional audio_file, or if
 that is not provided then defaults to the maximum duration of
 the rendered clips of this or any child windows.

 The duration of a given set of clips is calculated as the larger
 of:

 - Either, the length of all non-OVERLAY clips concatenated
 together

 - Or the length of the display time of all OVERLAY clips given
 their various staggered start times depending on the number of
 clips, their overlay concurrency, their durations, etc.

 If the specified duration is shorter than the content of clips
 some clips will not be shown. If it is longer there will be
 blank content at the end of the clips.

 If the duration and the length of the audio_file differ, then
 the audio file will fade out starting 5 seconds before the end
 of the video.

 - output_file - Defaults to "./output.mp4" where the resulting
 video from a call to render this Window will be created.
 - z_index - Optional. If there are multiple windows being
 rendered, ones with higher z_indexes are rendered on top of
 others. If two windows have the same z_index which one ends up
 on top is arbitrary. If not specified windows will have
 increasing z_index in order of creation.
 - watermarks - Optional. A list of Watermark image objects to
 overlay on top of the resultant video.
 - sample_aspect_ratio - Optional. The Sample Aspect Ratio (SAR)
 for the rendered content of this Window. If specified, it must
 be in "W:H" format. This should not be needed generally unless
 you are encoding for TV broadcast or similar. Defaults to the
 SAR if the input Video, or 1:1 if there is no input Video. If
 multiple input videos have different SARs an Exception is
 thrown, you must preprocess your inputs to all have the same
 SAR.
 - pix_fmt - Optional. The pixel format of this window, defaults
 to yuv420p. All Windows that are rendered together must have
 the same pix_fmt.
 - overlay_batch_concurrency - Optional. Defaults to 16. An
 internal parameter that controls how many overlays we will
 attempt in one command line for FFMPEG. Increasing this value
 may cause crashes and memory corruption errors, setting it lower
 increases rendering time.
 - force - Defaults to False, force regeneration of all video
 content, ignoring what is in the cache.

 NOTE: Window objects cache data both within and across program
 invocations. Broadly this saves a ton of compute time by not
 re-transcoding Clips whose results can't change, but can result in
 the wrong stuff if there are collisions in the cache.

 If two Clips have the same elements here, they are assumed to be
 the same in the Cache:

 - Absolute path to the filename from the underlying Video object
 - Clip start time
 - Clip end time
 - The display_style of the Clip as being rendered in this Window.
 - Clip width
 - Clip height
 - Window pan_direction (only relevant if display_style is PAN and
 pan_direction is ALTERNATE)
 - The pixel format of this Window

 If the Cache is incorrect (most likely because the underlying
 contents of an input filename have changed), the cache should be
 cleared by calling the static clear_cache method of the Window
 class:

 Window.clear_cache()

 '''

 # We use z-index to determine what Windows go on top of others.
 # Users can specify their own z_indexes, but if they don't we
 # increment in order of created Window objects.
 z = 0

 tmpdir = "%s/%s/vedit/" % (tempfile.gettempdir(), getpass.getuser())
 cache_dict_file = 'cachedb'
 cache_dict = {}

 @staticmethod
[docs] def set_tmpdir(tmpdir):
 if os.path.exists(tmpdir):
 Window.tmpdir = tmpdir
 else:
 try:
 os.makedirs(tmpdir)
 Window.tmpdir = tmpdir
 except Exception as e:
 raise("Error creating tmpdir: %s, error was: %s" % (tmpdir, e))

 @staticmethod
[docs] def load_cache_dict():
 '''If a given Clip is reused across several program invocations, we
 save time by not recreating it. We store information about
 what Clips we have around here.
 '''
 if os.path.exists("%s/%s" % (Window.tmpdir, Window.cache_dict_file)):
 f = open("%s/%s" % (Window.tmpdir, Window.cache_dict_file), 'r')
 Window.cache_dict = json.load(f)
 f.close()
 else:
 if not os.path.isdir(Window.tmpdir):
 os.makedirs(Window.tmpdir)
 Window.cache_dict = {}

 @staticmethod
[docs] def save_cache_dict():
 '''If a given Clip is reused across several program invocations, we
 save time by not recreating it. We store information about
 what Clips we have around here.
 '''
 if not os.path.isdir(Window.tmpdir):
 os.makedirs(Window.tmpdir)

 f = open("%s/%s" % (Window.tmpdir, Window.cache_dict_file), 'w')
 json.dump(Window.cache_dict, f)
 f.close()

 @staticmethod
[docs] def clear_cache():
 '''Try to remove all the files in the tmpdir. This is necessary if,
 for example, an input Video filename has new contents.
 '''
 if os.path.isdir(Window.tmpdir):
 for cache_file in glob.glob("%s/*" % (Window.tmpdir)):
 try:
 os.remove(cache_file)
 except Exception as e:
 raise Exception("Error while deleting file %s: %s" % (cache_file, e))

 ### Window method ##
 def __init__(self,
 windows = None,
 clips = None,
 bgcolor = 'Black',

 # For windows with no clips, they can optionally
 # place an image on top of their bgcolor. The image
 # is assumed to be sized correctly, no scaling or
 # placement is done.
 bgimage_file = None,
 width = 1280,
 height = 720,
 sample_aspect_ratio = None, # If specified, must be
 # in W:H format. Sets
 # the sample aspect
 # ratio / pixel aspect
 # ratio for this window.
 # Should not generally
 # be used unless
 # encoding a video for
 # TV broadcast or
 # similar. If not set
 # will default to the
 # SAR of an input video,
 # or 1 if there is no
 # input video. If
 # multiple input videos
 # have differing SARs an
 # exception will be
 # issued during
 # rendering.
 pix_fmt = None, # Defaults to yuv420p
 # The position of this window relative to its parent window (if any)
 x = 0,
 y = 0,
 duration = None, # The total rendered duration,
 # defaults to that of the audio
 # track if provided, and the
 # maximum rendered Clip duration of
 # this or any child Window
 # objects. Short values may lead to
 # some clips never being visible,
 # long values may lead to empty
 # screen once all clips have been
 # shown.
 z_index = None,
 watermarks = None,
 audio_file = None,
 audio_desc = '',
 display = None,
 output_file = "./output.mp4",
 overlay_batch_concurrency = 16, # The number of
 # overlays that we
 # will attempt to
 # apply with one
 # command line for
 # FFMPEG - setting
 # this higher may
 # cause crashes and
 # memory corruptions,
 # setting it lower
 # increases rendering
 # time.
 force = False # If true then we disregard the cache
 # and regenerate clips each time we
 # encounter them.
):

 if windows is not None:
 self.windows = windows
 else:
 self.windows = []

 if clips is not None:
 self.clips = clips
 else:
 self.clips = []

 self.bgimage_file = bgimage_file

 self.bgcolor = bgcolor
 self.width = width
 self.height = height

 if sample_aspect_ratio is not None and not re.match(r'\d+:\d+', sample_aspect_ratio):
 raise Exception("If sample_aspect_ratio is provided it must be in W:H format.")

 self.sample_aspect_ratio = sample_aspect_ratio
 self.pix_fmt = pix_fmt

 self.x = x
 self.y = y

 # If the user doesn't provide z_indexes for this Window, we
 # create them in order that Windows are created.
 if z_index is not None:
 self.z_index = z_index
 else:
 self.z_index = Window.z
 Window.z += 1

 if watermarks is not None:
 self.watermarks = watermarks
 else:
 self.watermarks = []

 #self.original_audio = original_audio

 if audio_file is not None:
 if not os.path.exists(audio_file):
 raise Exception("No audio found at: %s" % (audio_file))
 else:
 self.audio_file = audio_file
 (status, output) = subprocess.getstatusoutput("%s -v quiet -print_format json -show_streams %s" % (FFPROBE, audio_file))
 audio_info = json.loads(output)
 for stream in audio_info['streams']:
 if stream['codec_type'] == 'audio':
 self.audio_duration = float(stream['duration'])
 self.audio_file_channels = int(stream['channels'])
 break
 else:
 self.audio_file = None
 self.audio_file_channels = None
 self.audio_duration = None

 self.audio_desc = audio_desc

 # Later on, when we render things, duration will get set to
 # the maximum of the rendered Clip durations of this or any
 # child windows unless it has been explicitly set here, or
 # implicitly set here by the audio_duration.
 if duration is None:
 if audio_file is not None:
 self.duration = self.audio_duration
 else:
 self.duration = duration
 else:
 self.duration = duration

 # Individual Clip objects can override these Display settings.
 if display is not None:
 self.display = display
 else:
 self.display = Display()

 if Window.cache_dict == {}:
 Window.load_cache_dict()

 self.output_file = output_file

 self.overlay_batch_concurrency = overlay_batch_concurrency

 self.force = force

 ### Window method ##
[docs] def get_display(self, clip):
 '''Internal utility function to get the Display properties for this
 Clip being rendered in this Window. The logic is:

 1. If the Clip was created with a Display object, use that.
 2. Otherwise, if the Window was created with a Display object, use that.
 3. Otherwise, use the default Display object.

 '''
 if clip.display is not None:
 return clip.display
 elif self.display is not None:
 return self.display
 else:
 return Display()

 ### Window method ##
[docs] def get_next_renderfile(self):
 '''Internal utility function, we need to generate a bunch of
 intermediate files, this generates unique names for them.

 '''
 return "%s/%s.mp4" % (Window.tmpdir, str(uuid.uuid4()))

 ### Window method ##
[docs] def render(self, helper=False, audio_channels=None):
 '''If helper is true we're rendering a sub-window, the result of which
 is an intermediate file stored in the tmpdir somewhere. If
 helper is False then we are rendering user output, and it will
 go in the path specified by self.output_file.

 '''

 # File to accumulate things in.
 tmpfile = None

 child_windows = [w for w in self.get_child_windows()]
 all_windows = [self] + child_windows

 ###### Audio Channel stuff ###########################
 # Determine the audio channel configuration of this set of clips.
 #
 # If audio_channels is None then this is a base window and we
 # need to calculate the correct number of channels for this
 # and all child windows.
 if audio_channels is None:
 clip_channels = set([clip.get_channels() for window in all_windows for clip in window.clips if clip.get_channels() is not None])
 if len(clip_channels) > 1:
 log.warn("Different clips have different numbers of audio channels: %s, converting all clips to mono." % (clip_channels))
 audio_channels = 1
 elif len(clip_channels) == 0:
 log.info("No input audio channels, will add silent mono channel to output.")
 audio_channels = 1
 else:
 audio_channels = clip_channels.pop()

 ###### SAR stuff #####################################
 # Determine the output SAR for this video, or raise an
 # Exception if the inputs have mismatched SARs.
 sars = set([clip.get_sar() for window in all_windows if window.sample_aspect_ratio is None for clip in window.clips] + [w.sample_aspect_ratio for w in all_windows if w.sample_aspect_ratio is not None])
 computed_sar = None
 if len(sars) > 1:
 raise Exception("Multiple different sample aspect ratios present in input videos: %s. Please preprocess your inputs to all have the same SARs." % (sars))
 elif len(sars) == 1:
 computed_sar = sars.pop()

 if self.sample_aspect_ratio is None:
 if computed_sar is not None:
 self.sample_aspect_ratio = computed_sar
 else:
 if computed_sar is not None and computed_sar != self.sample_aspect_ratio:
 # It's OK to mismatch these things, but usually it
 # will be an error that stretches the video by the
 # ratio of the input over the output SAR.
 log.warn("input videos/child windows have SAR of %s, but the output SAR of %s has been specified, this may result in distorted output." % (computed_sar, self.sample_aspect_ratio))

 sar_clause = ""
 if self.sample_aspect_ratio is not None:
 # FFMPEG has deprecated the W:H notation in favor of W/H...
 (sarwidth, sarheight) = self.sample_aspect_ratio.split(':')
 sar_clause = ",setsar=sar=%s/%s" % (sarwidth, sarheight)

 ###### Pixel Format stuff #############################
 pix_fmts = set([w.pix_fmt for w in all_windows if w.pix_fmt is not None])

 computed_pix_fmt = None
 if len(pix_fmts) > 1:
 raise Exception("Multiple different color space / pixel format arguments for output windows: %s. All output windows must have the same pixel format." % (pix_fmts))
 elif len(pix_fmts) == 1:
 computed_pix_fmt = pix_fmts.pop()

 if self.pix_fmt is None and computed_pix_fmt is not None:
 self.pix_fmt = computed_pix_fmt
 else:
 self.pix_fmt = 'yuv420p'

 ###### Duration stuff ################################
 if self.duration is None:
 my_duration = max([w.compute_duration(w.clips) for w in all_windows])
 if my_duration == 0:
 raise Exception("Could not determine duration for window.")
 else:
 log.warn("No duration specified for window, set duration to %s, the longest duration of clips in this or any of its child windows." % (my_duration))
 self.duration = my_duration

 ###### Background stuff ##############################
 background_file = self.get_next_renderfile()
 if self.bgimage_file is not None:
 # Lay down a background with silent audio if requested to.
 cmd = '%s -y -loop 1 -i %s -f lavfi -i aevalsrc=0 -ac %d -c:a libfdk_aac -pix_fmt %s -r 30000/1001 -crf 16 -c:v libx264 -filter_complex " color=%s:size=%dx%d,setpts=PTS-STARTPTS/TB [base] ; [0] setpts=PTS-STARTPTS/TB [image]; [base] [image] overlay%s " -t %f %s' % (FFMPEG, self.bgimage_file, audio_channels, self.pix_fmt, self.bgcolor, self.width, self.height, sar_clause, self.duration, background_file)
 log.info("Running: %s" % (cmd))
 (status, output) = subprocess.getstatusoutput(cmd)
 log.debug("Output was: %s" % (output))
 if status != 0 or not os.path.exists(background_file):
 raise Exception("Error producing background image video file %s with command: %s\n\nOutput was: %s" % (background_file, cmd, output))
 else:
 # There was no background image, lay down a solid color with silent audio.
 cmd = '%s -y -f lavfi -i aevalsrc=0 -ac %d -c:a libfdk_aac -pix_fmt %s -r 30000/1001 -crf 16 -c:v libx264 -filter_complex " color=%s:size=%dx%d%s,setpts=PTS-STARTPTS/TB " -t %f %s' % (FFMPEG, audio_channels, self.pix_fmt, self.bgcolor, self.width, self.height, sar_clause, self.duration, background_file)
 log.info("Running: %s" % (cmd))
 (status, output) = subprocess.getstatusoutput(cmd)
 log.debug("Output was: %s" % (output))
 if status != 0 or not os.path.exists(background_file):
 raise Exception("Error producing solid background file %s with command: %s\n\nOutput was: %s" % (background_file, cmd, output))

 ###### Render This Window's Clips ####################
 tmpfile = self.render_clips(self.clips, background_file, audio_channels)

 ###### Render All Child Windows ######################
 for window in sorted(self.windows, key=lambda x: x.z_index):
 if window.pix_fmt is None:
 window.pix_fmt = self.pix_fmt

 current = tmpfile
 window_file = window.render(helper=True, audio_channels=audio_channels)
 tmpfile = self.get_next_renderfile()

 cmd = '%s -y -i %s -i %s -pix_fmt %s -r 30000/1001 -crf 16 -c:v libx264 -ac %d -c:a libfdk_aac -filter_complex " [0:v] fifo [v0] ; [1:v] fifo [v1] ; [v0] [v1] overlay=x=%s:y=%s:eof_action=pass%s [outv] ; [0:a] afifo [a0] ; [1:a] afifo [a1] ; [a0] [a1] amix=inputs=2:duration=longest:dropout_transition=5 [outa] " -map "[outv]" -map "[outa]" -t %f %s' % (FFMPEG, current, window_file, window.pix_fmt, audio_channels, window.x, window.y, sar_clause, self.duration, tmpfile)

 log.info("Running: %s" % (cmd))
 (status, output) = subprocess.getstatusoutput(cmd)
 log.debug("Output was: %s" % (output))
 if status != 0 or not os.path.exists(tmpfile):
 raise Exception("Error applying overlay window %s to file %s with command: %s\n\nOutput was: %s" % (window_file, current, cmd, output))

 ###### Render Watermarks #############################
 if len(self.watermarks) > 0:
 tmpfile = self.add_watermarks(self.watermarks, tmpfile)

 ###### Add Audio and Description #####################
 if self.audio_file:
 audio_tmpfile = None
 if self.audio_file_channels != audio_channels:
 # Convert the input audio file to the right number of channels.
 audio_tmpfile = self.get_next_renderfile()
 cmd = '%s -i %s -ac %d -c:a libfdk_aac -vn %s' % (FFMPEG, self.audio_file, audio_channels, audio_tmpfile)
 log.info("Running: %s" % (cmd))
 (status, output) = subprocess.getstatusoutput(cmd)
 log.debug("Output was: %s" % (output))
 if status != 0 or not os.path.exists(audio_tmpfile):
 raise Exception("Error converting audio file %s to have %d channels with command: %s\n\nOutput was: %s" % (audio_tmpfile, audio_channels, cmd, output))

 if audio_tmpfile is None:
 audio_tmpfile = self.audio_file

 if self.audio_duration is not None and self.audio_duration == self.duration:
 audio_fade_start = self.duration
 audio_fade_duration = 0
 else:
 audio_fade_start = max(0, self.duration - 5)
 audio_fade_duration = self.duration - audio_fade_start
 afade_clause = ' -c:a libfdk_aac -filter_complex " [1:a] afade=t=out:st=%f:d=%f [a1] ; [0:a] [a1] amix=inputs=2:duration=longest:dropout_transition=5 " ' % (audio_fade_start, audio_fade_duration)

 current = tmpfile
 tmpfile = self.get_next_renderfile()

 filter_clause = ' -vf copy '

 if self.audio_desc:
 audio_desc_file = '%s/%s.txt' % (Window.tmpdir, str(uuid.uuid4()))
 f = open(audio_desc_file, 'w')
 f.write(self.audio_desc)
 f.close()
 filter_clause = " -filter_complex 'drawtext=fontcolor=white:fontsize=24:borderw=1:textfile=%s:x=10:y=h-th-10:enable=gt(t\,%f)'%s" % (audio_desc_file, max(0, self.duration - 5), sar_clause)

 cmd = '%s -y -i %s -i %s -ac %d -pix_fmt %s %s %s -t %f %s' % (FFMPEG, current, audio_tmpfile, audio_channels, self.pix_fmt, afade_clause, filter_clause, self.duration, tmpfile)
 log.info("Running: %s" % (cmd))
 (status, output) = subprocess.getstatusoutput(cmd)
 log.debug("Output was: %s" % (output))
 if status != 0 or not os.path.exists(tmpfile):
 raise Exception("Error adding audio %s to file %s with command: %s\n\nOutput was: %s" % (audio_tmpfile, current, cmd, output))

 ###### Fix overall volume issues.
 current = tmpfile
 tmpfile = self.get_next_renderfile()
 cmd = '%s -y -i %s -pix_fmt %s -c:a libfdk_aac -ac %d -vf copy -af " [0:a] dynaudnorm=g=3 " %s' % (FFMPEG, current, self.pix_fmt, audio_channels, tmpfile)
 log.info("Running: %s" % (cmd))
 (status, output) = subprocess.getstatusoutput(cmd)
 log.debug("Output was: %s" % (output))
 if status != 0 or not os.path.exists(tmpfile):
 raise Exception("Error adjusting volume of file %s with command: %s\n\nOutput was: %s" % (current, cmd, output))

 if not helper:
 shutil.copyfile(tmpfile, self.output_file)

 # Render returns the path of the file it generated.
 return tmpfile

 ### Window method ##
[docs] def add_watermarks(self, watermarks, current):
 cmd = '%s -y -i %s ' % (FFMPEG, current)

 tmpfile = self.get_next_renderfile()

 file_idx = 0

 for watermark in watermarks:
 if watermark.filename is not None:
 file_idx += 1
 cmd += " -loop 1 -i %s " % (watermark.filename)

 cmd += ' -acodec copy '

 cmd += ' -pix_fmt %s -filter_complex " ' % (self.pix_fmt)

 filter_idx = 0

 for watermark in watermarks:
 if watermark.bgcolor is not None:
 cmd += ' color=%s:size=%dx%d [b%d] ; ' % (watermark.bgcolor, watermark.width, watermark.height, file_idx + filter_idx)
 filter_idx += 1

 for idx, watermark in enumerate(watermarks):
 fade_clause = ""
 if watermark.fade_in_start is not None:
 in_start = watermark.fade_in_start
 if in_start < 0:
 in_start = self.duration + in_start
 in_duration = min(watermark.fade_in_duration, self.duration - in_start)
 fade_clause = "fade=t=in:alpha=1:st=%f:d=%f" % (in_start, in_duration)
 if watermark.fade_out_start is not None:
 out_start = watermark.fade_out_start
 if out_start < 0:
 out_start = self.duration + out_start
 out_duration = min(watermark.fade_out_duration, self.duration - out_start)
 if fade_clause == "":
 fade_clause = "fade="
 else:
 fade_clause += ":"
 fade_clause += "t=out:alpha=1:st=%f:d=%f" % (out_start, out_duration)

 mark_clause = fade_clause
 if mark_clause == "":
 mark_clause = "copy"

 input_idx = idx+1
 if watermark.filename is None:
 cmd += " [b%d] %s [w%d] ; " % (input_idx + file_idx - 1, mark_clause, idx)
 else:
 cmd += " [%d] %s [w%d] ; " % (input_idx, mark_clause, idx)

 # Overlay them onto one another
 prior_overlay = '0'
 for idx, watermark in enumerate(watermarks):
 cmd += ' [%s] [w%d] overlay=x=%s:y=%s:eof_action=pass [o%s] ; ' % (prior_overlay, idx, watermark.x, watermark.y, idx)
 prior_overlay = "o%s" % idx

 # Stip off training [o##] ;
 cmd = cmd[:-(6+len(str(idx-1)))]
 cmd += ' " %s' % (tmpfile)
 log.info("Running: %s" % (cmd))
 (status, output) = subprocess.getstatusoutput(cmd)
 log.debug("Output was: %s" % (output))
 if status != 0 or not os.path.exists(tmpfile):
 raise Exception("Error adding watermarks to file %s with command: %s\n\nOutput was: %s" % (current, cmd, output))

 return tmpfile

 ### Window method ##
[docs] def get_clip_hash(self, clip, width, height, pan_direction="", pix_fmt="yuv420p", include_audio=True):
 '''It can be very time consuming to produce a clip from a video, we
 endeavor here to not do the same work over and over if it's
 not needed.

 '''

 filename = os.path.abspath(clip.video.filename)

 # Check if the underlying file has changed for a given path.
 file_info = os.stat(filename)
 file_size = file_info.st_size
 file_mtime = file_info.st_mtime

 display = self.get_display(clip)
 clip_name = "%s%s%s%s%s%s%s%s%s%s%s" % (filename,
 clip.start,
 clip.end,
 display.display_style,
 width,
 height,
 pan_direction,
 pix_fmt,
 include_audio,
 file_size,
 file_mtime)
 md5 = hashlib.md5()
 md5.update(clip_name.encode('utf-8'))
 return md5.hexdigest()

 ### Window method ##
[docs] def render_clips(self, clips, background_file, audio_channels):
 '''Render the clips for the current window.

 Inputs:

 self - The current Window

 clips - a list of clips to render

 background_file - Path to a video file with a background for
 any OVERLAY clips to be rendered onto, this is returned if the
 clips argument is the empty list

 For each clip we:

 1. Check in our cache to see if we already have a version of
 this clip in the appropriate resolution.

 2. If there is a cache miss, produce a clip of the appropriate
 resolution and cache it.

 3. Concatenate and overlay the following clips according to
 this procedure:

 We process the Clips in order in self.clips, and concatenate
 all the non-OVERLAY clips to one another.

 Then we overlay the OVERLAY clips on top, starting at the
 beginning.

 The return value is a file of rendered video, either that
 containing the clips, or just the background_file itself if
 there were no clips.

 '''

 if len(clips) == 0:
 # Nothing to do.
 return background_file

 tmpfile = None

 clip_files = []
 overlays = []

 # Build up our library of clips.
 for clip in self.clips:
 filename = self.clip_render(clip, audio_channels)

 display = self.get_display(clip)
 if display.display_style == OVERLAY:
 overlays.append({ 'clip' : clip,
 'filename' : filename })
 else:
 clip_files.append(filename)

 # Handle the non-overlays.
 if len(clip_files):
 if len(clip_files) > 1:
 # There is concatenation to be done.
 concat_vid = self.get_next_renderfile()
 concat_file = "%s/concat-%s.txt" % (Window.tmpdir, str(uuid.uuid4()))
 f = open(concat_file, 'w')
 for clip_file in clip_files:
 f.write("file '%s'\n" % (clip_file))
 f.close()

 cmd = "%s -y -f concat -safe 0 -i %s -pix_fmt %s -r 30000/1001 -crf 16 -c:v libx264 -c:a libfdk_aac -ac %d %s" % (FFMPEG, concat_file, self.pix_fmt, audio_channels, concat_vid)

 log.info("Running: %s" % (cmd))
 (status, output) = subprocess.getstatusoutput(cmd)
 log.debug("Output was: %s" % (output))
 if status != 0 or not os.path.exists(concat_vid):
 raise Exception("Error producing concatenated file %s with command: %s\n\nOutput was: %s" % (concat_vid, cmd, output))

 overlay_video = Video(concat_vid)
 else:
 # There is just one non-overlay.
 overlay_video = Video(clip_files[0])
 concat_vid = clip_files[0]

 audio_clause = ""
 if overlay_video.channels is None:
 audio_clause = " [0:a] afifo "
 else:
 audio_clause = " [0:a] afifo [a0] ; [1:a] afifo [a1] ; [a0] [a1] amix=inputs=2:duration=longest:dropout_transition=5 "

 # Put the result on top of the background_file.
 tmpfile = self.get_next_renderfile()
 cmd = '%s -y -i %s -i %s -pix_fmt %s -r 30000/1001 -crf 16 -c:v libx264 -c:a libfdk_aac -ac %d -filter_complex " [0:v] fifo,setpts=PTS-STARTPTS/TB [a] ; [1:v] fifo,setpts=PTS-STARTPTS/TB [b] ; [a] [b] overlay=x=0:y=0:eof_action=pass ; %s " -t %f %s' % (FFMPEG, background_file, concat_vid, self.pix_fmt, audio_channels, audio_clause, self.duration, tmpfile)

 log.info("Running: %s" % (cmd))
 (status, output) = subprocess.getstatusoutput(cmd)
 log.debug("Output was: %s" % (output))
 if status != 0 or not os.path.exists(tmpfile):
 raise Exception("Error producing concatenated clip file %s with command: %s\n\nOutput was: %s" % (tmpfile, cmd, output))
 else:
 tmpfile = background_file

 # Add our overlays.
 (duration, overlay_timing) = self.compute_duration(clips, include_overlay_timing=True)

 # Goofy nested for loops here because ffmpeg has problems if
 # the command line gets too long with too many overlays, so we
 # do it a bit at a time.
 for overlay_group in range(0, len(overlays), self.overlay_batch_concurrency):
 prior_overlay = '0:v'
 cmd = "%s -y -i %s " % (FFMPEG, tmpfile)
 include_clause = ""
 scale_clause = ""
 filter_complex = ' -pix_fmt %s -r 30000/1001 -crf 16 -c:v libx264 -c:a libfdk_aac -ac %d -filter_complex " ' % (self.pix_fmt, audio_channels)
 audio_clips = []
 for overlay_idx in range(overlay_group, min(len(overlays), overlay_group + self.overlay_batch_concurrency)):
 overlay_start = overlay_timing[overlay_idx][0]
 overlay_end = overlay_timing[overlay_idx][1]
 overlay = overlays[overlay_idx]['clip']
 display = self.get_display(overlay)
 filename = overlays[overlay_idx]['filename']

 include_clause += " -i %s " % (filename)

 scale = random.uniform(1.0/3, 2.0/3)
 # Set the width to be randomly between 2/3 and 1/3th
 # of the window width, and the height so the aspect
 # ratio is retained.
 ow = 2*int(self.width*scale // 2)
 oh = 2*int(overlay.video.height * ow // int(overlay.video.width * 2))
 ilabel = overlay_idx + 1 - overlay_group
 filter_complex += " [%d:v] fifo,scale=width=%d:height=%d,setpts=PTS-STARTPTS+%f/TB [o%d] ; " % (ilabel, ow, oh, overlay_start, overlay_idx)

 # Only include audio for this clip if the display says to include it.
 if display.include_audio:
 adelay = overlay_start*1000

 audio_clips.append({
 "ilabel" : ilabel,
 "start" : adelay,
 "channels" : overlay.get_channels(),
 })

 direction = display.overlay_direction

 if direction in [UP, DOWN]:
 x = random.randint(0, self.width - ow)
 if direction == UP:
 y = "'if(gte(t,%f), H-(t-%f)*%f, NAN)'" % (overlay_start, overlay_start, float(self.height+oh) / overlay.get_duration())
 elif direction == DOWN:
 y = "'if(gte(t,%f), -h+(t-%f)*%f, NAN)'" % (overlay_start, overlay_start, float(self.height+oh) / overlay.get_duration())
 else:
 y = random.randint(0, self.height - oh)
 if direction == LEFT:
 x = "'if(gte(t,%f), -w+(t-%f)*%f, NAN)'" % (overlay_start, overlay_start, float(self.width+ow) / overlay.get_duration())
 elif direction == RIGHT:
 x = "'if(gte(t,%f), W-(t-%f)*%f, NAN)'" % (overlay_start, overlay_start, float(self.width+ow) / overlay.get_duration())

 filter_complex += ' [%s] [o%d] overlay=x=%s:y=%s:eof_action=pass [t%d] ; ' % (prior_overlay, overlay_idx, x, y, overlay_idx)
 prior_overlay = 't%d' % (overlay_idx)

 tmpfile = self.get_next_renderfile()

 # Strip off the trailing [t##] ; of the filter_complex
 filter_complex = filter_complex[:-(6+len(str(overlay_idx - 1)))]
 filter_complex += " [outv] ; "

 audio_offsets = ""
 audio_mix = " [0:a] "
 aindex = 1
 for aclip in audio_clips:
 adelay_clause = ""
 if aclip['start'] > 0:
 adelay_clause = ",adelay=" + "|".join([str(aclip['start']) for x in range(aclip['channels'])])
 audio_offsets += " [%d:a] afifo%s [a%d] ; " % (aclip['ilabel'], adelay_clause, aindex)
 audio_mix += " [a%d] " % (aindex)
 aindex += 1
 if aindex > 1:
 audio_clause = audio_offsets + audio_mix + " amix=inputs=%d:duration=longest:dropout_transition=5 [outa] " % (aindex)
 else:
 audio_clause = audio_offsets + audio_mix + " afifo [outa] "

 filter_complex += audio_clause
 cmd += include_clause + filter_complex + ' " -map "[outv]" -map "[outa]" %s' % (tmpfile)
 log.info("Running: %s" % (cmd))
 (status, output) = subprocess.getstatusoutput(cmd)
 log.debug("Output was: %s" % (output))
 if status != 0 or not os.path.exists(tmpfile):
 raise Exception("Error producing clip file by %s at: %s\n\nOutput was: %s" % (cmd, tmpfile, output))

 return tmpfile

 ### Window method ##
[docs] def clip_render(self, clip, channels):
 '''Render a single clip into the tmpdir according to the rules defined
 by the appropriate Display object.

 Returns the name of a file where the resulting rendered clip
 is at.
 '''
 display = self.get_display(clip)

 scale_clause = ""
 clip_width = None
 clip_height = None

 if display.display_style == PAD:
 (scale, ow, oh) = self.get_output_dimensions(clip.video.width, clip.video.height, self.width, self.height, min)

 clip_width = ow
 clip_height = oh

 xterm = ""
 if ow != self.width:
 xterm = ":x=%d" % ((self.width - ow) // 2)

 yterm = ""
 if oh != self.height:
 yterm = ":y=%s" % ((self.height - oh) // 2)

 if scale != 1:
 scale_clause = "scale=width=%d:height=%d," % (ow, oh)

 scale_clause += "pad=width=%d:height=%d%s%s:color=%s" % (self.width, self.height, xterm, yterm, display.pad_bgcolor)

 elif display.display_style == CROP:
 (scale, ow, oh) = self.get_output_dimensions(clip.video.width, clip.video.height, self.width, self.height, max)

 clip_width = ow
 clip_height = oh

 if scale != 1:
 scale_clause = "scale=width=%d:height=%d," % (ow, oh)

 scale_clause += "crop=w=%d:h=%d" % (self.width, self.height)

 elif display.display_style == PAN:
 (scale, ow, oh) = self.get_output_dimensions(clip.video.width, clip.video.height, self.width, self.height, max)

 clip_width = ow
 clip_height = oh

 if scale != 1:
 scale_clause = "scale=width=%d:height=%d," % (ow, oh)

 # We need to pan the image if scale != 1.
 pan_clause = ''
 if ow > self.width or oh > self.height:
 # Note - we only want to call this if we're actually
 # panning, or it will erroneously trigger us to
 # alternate pan directions.
 direction = display.get_pan_direction()

 xpan = ''
 if ow > self.width:
 xpan = "x=%s" % (self.get_pan_clause(clip, direction, ow, self.width))

 ypan = ''
 if oh > self.height:
 ypan = "y=%s" % (self.get_pan_clause(clip, direction, oh, self.height))

 # NOTE: This logic does not allow both x and y
 # panning, additional stuff would be required to get
 # the : separators right in the pan clause if both
 # could be present.
 pan_clause = ":%s%s" % (xpan, ypan)

 scale_clause += 'crop=w=%d:h=%d%s' % (self.width, self.height, pan_clause)

 elif display.display_style == OVERLAY:
 # Overlays will be scaled at the time the overlay is
 # applied so we can reuse the same clips at different
 # scales.
 scale_clause = ""

 clip_width = clip.video.width
 clip_height = clip.video.height

 else:
 raise Exception("Error, unknown display style: %s" % (display.display_style))

 # Check the cache for such a clip.
 # If not, produce it and save it in the cache.
 clip_hash = self.get_clip_hash(clip=clip,
 width=self.width,
 height=self.height,
 pan_direction=display.prior_pan,
 pix_fmt=self.pix_fmt,
 include_audio=display.include_audio)

 if clip_hash in Window.cache_dict and not self.force:
 log.info("Cache hit for clip: %s" % (clip_hash))
 return Window.cache_dict[clip_hash]
 else:
 filename = "%s/%s.mp4" % (Window.tmpdir, clip_hash)

 # OK - because we want to be able to concatenate clips,
 # and concatenate requires identical video and audio
 # stream configurations, we have to create a silent audio
 # channels if none exists.
 add_silent_audio = ""
 audio_channels_clause = " -ac %d " % (channels)
 if clip.get_channels() is None or not display.include_audio:
 add_silent_audio = " -f lavfi -i aevalsrc=0 "

 audio_clause = add_silent_audio + audio_channels_clause

 filter_components = []
 if scale_clause != "":
 filter_components.append(scale_clause)
 if clip.get_channels is None or not display.include_audio:
 filter_components.append(" [1:a] afifo ")

 filter_clause = ""
 if len(filter_components):
 filter_clause = ' -filter_complex " %s " ' % (" ; ".join(filter_components))

 cmd = '%s -y -ss %f -i %s %s -pix_fmt %s -r 30000/1001 -crf 16 -c:v libx264 -c:a libfdk_aac %s -t %f %s' % (FFMPEG, clip.start, clip.video.filename, audio_clause, self.pix_fmt, filter_clause, clip.get_duration(), filename)

 log.info("Running: %s" % (cmd))
 (status, output) = subprocess.getstatusoutput(cmd)
 log.debug("Output was: %s" % (output))
 if status == 0 and os.path.exists(filename):
 Window.cache_dict[clip_hash] = filename
 Window.save_cache_dict()
 else:
 raise Exception("Error producing clip file by %s at: %s\n\nOutput was: %s" % (cmd, filename, output))

 return filename

 ### Window method ##
[docs] def get_pan_clause(self, clip, direction, c, w):
 duration = clip.get_duration()
 pan_clause = ''
 if c > w:
 pixels_per_sec = float((c - w)) / duration
 if direction in [DOWN, RIGHT]:
 pan_clause = "trunc(%f * t)" % (pixels_per_sec)
 elif direction in [UP, LEFT]:
 pan_clause = "%d-trunc(%f * t)" % (c - w, pixels_per_sec)
 else:
 raise Exception("Could not determine pan direction.")

 return pan_clause

 ### Window method ##
[docs] def get_output_dimensions(self, cw, ch, ww, wh, operator):
 scale = operator(float(ww) / cw, float(wh) / ch)
 ow = int(cw * scale)
 oh = int(ch * scale)

 # If we are very near the aspect ratio of the target
 # window snap to that ratio.
 if (ow > ww - 2) and (ow < ww + 2):
 ow = int(ww)
 if (oh > wh - 2) and (oh < wh + 2):
 oh = int(wh)

 # If we have an odd size add 1.
 if ow % 2:
 ow += 1
 if oh %2:
 oh += 1

 return (scale, ow, oh)

 ### Window method ##
[docs] def compute_duration(self, clips, include_overlay_timing=False):
 '''Don't actually do anything, just report how long the clips will
 take to render in this window.

 Returns either a float (if include_overlay_timing is false), or
 a tuple with the float and an array of overlay timing data.

 The array of timing data has N elements, one for each clip of
 type Overlay, and each element is a start time, end time
 tuple.

 The logic is:

 Clips whose display_type is not OVERLAY are appended to one
 another.

 Clips whose display_type is OVERLAY cascade on top of those as
 dictated by the number of them, their durations, and the
 overlay_concurrency and overlay_min_gap their Displays have.

 '''

 # Compute the duration due to non-OVERLAY Clips.
 serial_start = 0
 duration = 0
 for clip in clips:
 display = self.get_display(clip)

 if display.display_style != OVERLAY:
 serial_start += clip.get_duration()
 duration += clip.get_duration()

 # Compute any change to the duration based on OVERLAY Clips,
 # and also compute the overlay timing data structure.
 overlay_start = 0
 overlay_timing = []
 overlay_prior_start = 0
 for clip in clips:
 display = self.get_display(clip)

 if display.display_style == OVERLAY:
 # Initially we spin up to display.overlay_concurrency
 # clips going, one immediately and the rest followed
 # at display.overlay_min_gap intervals, we do this
 # until there could be more than
 # display.overlay_concurrency videos going at once.
 if len(overlay_timing) < display.overlay_concurrency:
 overlay_start = len(overlay_timing) * display.overlay_min_gap

 overlay_end = overlay_start + clip.get_duration()

 # If we have more overlays than non-overlays, update duration accordingly.
 if overlay_end > duration:
 duration = overlay_end

 overlay_timing.append((overlay_start, overlay_end))

 # Set the value for the next iteration.
 overlay_prior_start = overlay_start

 else:
 # Find the earliest time one of the most recently
 # started overlay_concurrency clips are ending,
 # this is our candidate for when to start the next
 # clip.
 overlay_start = min(sorted([x[1] for x in overlay_timing])[-display.overlay_concurrency:])

 if overlay_start - overlay_prior_start < display.overlay_min_gap:
 # If not enough time has elapsed since we
 # started a clip, push it out a bit.
 overlay_start = overlay_prior_start + display.overlay_min_gap

 overlay_end = overlay_start + clip.get_duration()

 overlay_timing.append((overlay_start, overlay_end))

 # If we have more overlays than non-overlays, update duration accordingly.
 if overlay_end > duration:
 duration = overlay_end

 # Set the value for the next iteration.
 overlay_prior_start = overlay_start

 if include_overlay_timing:
 return (duration, overlay_timing)
 else:
 return duration

 ### Window method ##
[docs] def get_child_windows(self, include_self=False):
 '''Recursively get the list of all child windows.'''

 def flatten(l):
 '''Internal only helper function for collapsing all nested window
 objects onto a single list.'''

 for el in l:
 if isinstance(el, collections.Iterable) and not (isinstance(el, str) or isinstance(el, bytes)):
 for sub in flatten(el):
 yield sub
 else:
 yield el

 prepend = []
 if include_self:
 prepend = [self]
 return flatten(prepend + [w.get_child_windows(include_self=True) for w in self.windows])

Note - I had intended to offer scale arguments for watermark, but
ran across FFMPEG bugs (segmentation faults, memory corruption) when
using the FFMPEG scale filter on PNG images, so I left it out.
[docs]class Watermark(object):
 '''A list of Watermark objects can be provided to a Window.

 Each Watermark is either an image, or a rectangle of a solid color.

 Each watermark will be overlayed on the Window when it is rendered
 in the order they are present in that Window's watermarks list.

 If a watermark image is provided, it The is not scaled before
 being placed on the Window, so you must ensure it is the
 appropriate size.

 If a image is not provided, then: bgcolor, width, and height must
 be specified and will create a rectangle of that color and size as
 the watermark (this can be used to fade a video to black, or fade
 in from white for example).

 The Watermark can be positioned with the x and y arguments, which
 are passed to the ffmpeg overlay filter, so they can be simple
 things like the pixel offset from the top left, or complicated
 expressions like "main_w-overlay_w-10" to right justify the image,
 or "trunc((main_h-overlay_h)/2)" to vertically center it.

 By default the image is present for the whole video.

 The appearance of the image can be set to:

 * Begin at fade_in_start
 * End at fade_out_start

 Negative values of fade_in_start/fade_out_start are interpreted as
 offsets from the end of the video, rather than from the beginning.

 The Watermark can be made to gradually fade in or out by setting
 the fade_in_duration or fade_out_duration.

 '''

 def __init__(self,
 filename = None,
 x = "0",
 y = "0",
 fade_in_start = None, # Negative values are taken relative to the end of the video
 fade_in_duration = None,
 fade_out_start = None, # Negative values are taken relative to end of video.
 fade_out_duration = None,
 bgcolor = None,
 width = None,
 height = None):

 self.filename = filename
 if filename is not None and not os.path.exists(filename):
 raise Exception("No watermark media found at: %s" % (filename))

 self.bgcolor = bgcolor
 self.width = width
 self.height = height

 if self.filename is None and (self.bgcolor is None or self.width is None or self.height is None):
 raise Exception("Either filename, or all of bgcolor, width, and height must be provided.")
 elif self.filename is not None and (self.bgcolor is not None):
 raise Exception("Can't specify both filename and bgcolor for watermark.")

 self.x = x
 self.y = y
 self.fade_in_start = fade_in_start
 self.fade_in_duration = fade_in_duration
 self.fade_out_start = fade_out_start
 self.fade_out_duration = fade_out_duration

 if self.fade_in_start is not None and self.fade_in_duration is None:
 raise Exception("If either of fade_in_start or fade_in_duration is set they must both be set.")
 if self.fade_in_start is None and self.fade_in_duration is not None:
 raise Exception("If either of fade_in_start or fade_in_duration is set they must both be set.")
 if self.fade_out_start is not None and self.fade_out_duration is None:
 raise Exception("If either of fade_out_start or fade_out_duration is set they must both be set.")
 if self.fade_out_start is None and self.fade_out_duration is not None:
 raise Exception("If either of fade_out_start or fade_out_duration is set they must both be set.")

##
##
##
UTILITY METHODS
##
##
##

##
[docs]def distribute_clips(clips, windows, min_duration=None, randomize_clips=False):
 '''Utility function for creating collage videos of a set of clips.

 Input/Output parameters:

 - windows - A list of vsum.Window objects to distribute the clips
 among. These Window objects are modified by having whatever
 clips this function determines to send to them added to the end
 of their clips list.

 Inputs:

 - clips - A list of vsum.Clip objects to distribute
 - min_duration - If set to a numeric value the clips will be
 repeated over and over until the desired min_duration is met.
 Otherwise each clip is shown once and the resulting duration is
 a function of the resulting length within each window.

 NOTE: If min_duration is set, once it is obtained no more clips
 will be added to the result, and some input clips may be unused
 in that scenario.

 - randomize_clips - If true the input clips array will have it's
 contents randomized prior to being distributed, otherwise the
 resulting clips will be shown in order.

 The main idea is that a set of "windows" will be defined, such as
 this: ::

 +--+
 | Window 1 |
 | +-------------------------+ |
 | | Window 2 | +---------+| | |
 | | | | Window 3||
 | | +------------| ||
 | +---------------| Window 4 | ||
 | | | ||
 | | +---------+| ||
 | | | Window 5|+---------+|
 | | +---------+ | |
 | +--------------+ |
 +--+

 And clips will be distributed among them.

 This attempts to place clips in the window whose aspect ratio is a
 close match for the clip, while also balancing the total content
 duration of the clips in the windows (note: this can be different
 from the total duration of the rendered window when cascading
 clips are used).

 The exact logic used to distribute clips is:

 1. Get a prioritize list of windows to put the clip in, the
 windows are prioritized first by having the closest aspect ratio
 to the clip, and then among windows with the same aspect ratio
 from lowest window duration to longest.

 2. Then, we walk down this prioritized list and place this clip in
 the first window such that both:

 - (window_duration + clip_duration) <= 1.2*(minimum_window_duration + clip_duration)
 - and, if min_duration is set:
 - window_duration < min_duration

 '''

 if len(clips) == 0:
 return

 window_stats = []
 for window in windows:
 ar = float(window.width) / window.height
 duration = 0
 window_stats.append({ 'window' : window,
 'ar' : ar,
 'duration' : duration })

 # Internal only function to do the recursive work of parseling out
 # things.
 def add_clips_helper():
 if randomize_clips:
 random.shuffle(clips)

 for clip in clips:
 ar = float(clip.video.width) / clip.video.height
 duration = clip.get_duration()

 window_durations = [x.compute_duration(x.clips) for x in windows]
 min_window_duration = min(window_durations)

 # Sort candidate windows by increasing AR match and then by increasing duration.
 window_stats.sort(key=lambda x: (abs(x['ar'] - ar), x['duration']))

 # Find a window to add this clip to, while maintaining this
 # constraint:
 #
 # Find the first window sorted by closest aspect ratio and
 # then duration so long as adding this clip to the window so
 # long as:
 # window.duration + clip.duration <= 1.2*(min_window_duration + clip.duration)
 # window.duration < min_duration (if min_duration is not none)
 clip_added = False
 for window in window_stats:
 if (window['duration'] + duration) <= 1.2*(min_window_duration + duration):
 if min_duration is None or window['duration'] < min_duration:
 window['window'].clips.append(clip)
 window['duration'] = window['window'].compute_duration(window['window'].clips)
 clip_added = True
 break

 if not clip_added and min_duration is None:
 raise Exception("Failed to place clip in a window.")

 if min_duration is None:
 add_clips_helper()
 else:
 add_clips_helper()
 window_durations = [x.compute_duration(x.clips) for x in windows]
 while min(window_durations) < min_duration:
 add_clips_helper()
 window_durations = [x.compute_duration(x.clips) for x in windows]

 # No return value - the windows input/output parameter has the
 # chances made by this routine.
 return

##
[docs]def gen_background_video(duration,
 width = 1280,
 height = 720,
 bgcolor = 'Black',
 bgimage_file = None,
 output_file = None):
 '''Create a video file of the desired properties.

 Inputs:

 - duration - Time in seconds of the video
 - width / height - Width / height in pixels of the video - these
 are overridden if bgimage_file is provided.
 - bgcolor - The background color of the video
 - bgimage_file - Optional, if specified the video should consist
 of this image rather than a solid color, if specified the
 dimensions of the image determine the width and height.
 - output_file - If specified, the resulting file will be copied to
 this location.

 Outputs: Returns a string denoting the filesystem path where the
 resulting video can be found (which will differ from output_file).

 '''

 if bgimage_file is not None:
 bgimage_info = Video(bgimage_file)
 width = bgimage_info.width
 height = bgimage_info.height

 if output_file is None:
 w = Window(duration = duration,
 width = width,
 height = height,
 bgcolor = bgcolor,
 bgimage_file = bgimage_file)
 else:
 w = Window(duration = duration,
 width = width,
 height = height,
 bgcolor = bgcolor,
 bgimage_file = bgimage_file,
 output_file = output_file)

 return w.render()

if __name__ == '__main__':
 ''' Example usage:
 # Set some display properties.
 d = Display(display_style = PAN)

 # If the cache might be bad, we can clean it out.
 Window.clear_cache()

 # Define some videos.
 v1 = Video('test.mp4')
 v2 = Video('flip.mp4')

 # Define some clips from our videos.
 c1 = Clip(v1, 1, 3)
 c2 = Clip(v1, 7, 8)
 c3 = Clip(v2, 5, 6)
 cx = Clip(v1, 4, 9)
 c4 = Clip(v1, 4, 9, display=Display(display_style=OVERLAY, overlay_direction = UP))
 c5 = Clip(v2, 0, 1, display=Display(display_style=OVERLAY, overlay_direction = DOWN))
 c6 = Clip(v2, 1, 2, display=Display(display_style=OVERLAY, overlay_direction = LEFT))
 c7 = Clip(v2, 2, 3, display=Display(display_style=OVERLAY, overlay_direction = RIGHT))
 c8 = Clip(v2, 3, 5)

 # Define some windows.
 w0 = Window(width=1280, height=1024, audio_file='/wintmp/music/human405.m4a', duration=10)
 w1 = Window(display = d, height=1024, width=720)
 w2 = Window(width=200, height=200, x=520, y=520)
 w3 = Window(display=Display(display_style=OVERLAY, overlay_direction=RIGHT), bgcolor='White', width=560, height=512, x=720)
 w4 = Window(display=Display(display_style=PAD, overlay_direction=RIGHT, pad_bgcolor='Green'), bgcolor='Green', width=560, height=512, x=720, y=512)

 # We can apply some static image watermarks.
 m1 = Watermark('logo.png',
 x = "main_w-overlay_w-10",
 y = "main_h-overlay_h-10",
 fade_out_start = 3,
 fade_out_duration = 1)
 m2 = Watermark('logo128.png',
 x = "trunc((main_w-overlay_w)/2)",
 y = "trunc((main_h-overlay_h)/2)",
 fade_in_start = -1,
 fade_in_duration = 1)
 w0.watermarks = [m1, m2]

 # Windows can hold clips and/or other windows.
 w0.windows = [w1, w3, w4]
 # We can even have windows holding windows, e.g. w0->w1->w2.
 w1.windows = [w2]

 # Manually assign clips to windows.
 w2.clips = [c3]
 w1.clips = [c1, c2]
 w3.clips = [c4, c5, c6, c7, c8]
 w0.output_file = 'output1.mp4'
 w0.render()

 # Automatically distribute clips among windows..
 distribute_clips([c1, c2, c3, c8, cx, c4, c5, c6, c7], [w1, w2, w3, w4], w0.duration)
 w0.output_file = 'output2.mp4'
 w0.render()
 '''
 pass

 © Copyright 2016, Matthew Hayward.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

